

A Thesis Submitted in Partial Fulfilment of the Requirements
for the Degree of Master of Science in Computer Science

Evaluating (De-) Centralized Solutions for Kubernetes
Multi-Cluster Management

Focused on Service Discovery and Peer-to-Peer Relaying

Leon Alexander Kraß

Student ID: 947743

Submitted on the 7th of March 2025

Primary Examiner:
Prof. Dr. Patrick Stalljohann

FH Münster

Secondary Examiner:
Jasper Wiegratz, M. Sc.

SVA System Vertrieb
Alexander GmbH

 I

Abstract
Kubernetes multi-cluster management is a challenging task, particularly in terms of service discovery

for clusters and relaying the Kubernetes API. To address these challenges, various solutions showing

different architectural approaches have been implemented. To evaluate these solutions and their cor-

responding architectures, an evaluation model based on the Systems and software Quality Require-

ments and Evaluation series (ISO/IEC 25000 – 25099) is proposed. This model is applied to Rancher, a

centralized solution, and kubeanchors, a new decentralized solution based on Skupper. The results of

the evaluation are presented and discussed to provide further insights into the strengths and weak-

nesses of the assessed solutions and the evaluation model itself.

 II

Acknowledgments

To address the acknowledged individuals more personally, the following words are written in German:

Die Ausarbeitung meiner Master-Thesis stellt für mich einen wichtigen Meilensteil meiner akademi-

schen, beruflichen und persönlichen Entwicklung dar. Daher möchte ich allen Beteiligten mit diesen

Worten herzlich danken, mich auf diesem Weg unterstütz zu haben!

Ein besonderer Dank gilt meinem Erstprüfer, Herrn Prof. Dr. Stalljohann. Vielen Dank, dass Sie mir stets

mit Rat und Tat zur Seite standen, nicht nur bei dieser Arbeit, sondern auch über meine gesamte aka-

demische Laufbahn an der FH Münster hinweg! Die Erfahrungen, die ich durch Sie sammeln durfte,

haben meine fachliche Ausrichtung und Interessen nachhaltig positiv inspiriert.

Ich möchte Jasper Wiegratz für die tatkräftige Unterstützung als Zweitprüfer, Arbeitskollegen und be-

sonders als Freund danken. Danke, Jasper, ohne Dich wäre ich nicht zu diesem Ergebnis gekommen!

Deine Ideen, fachliche Kompetenz und Motivation sind beachtenswert und haben mir ungemein ge-

holfen.

All meinen Kollegen bei der SVA System Vertrieb Alexander GmbH, besonders denen, die mir stets den

Rücken freigehalten haben, gilt an dieser Stelle mein aufrichtiger Dank! Ohne Euch hätte ich es nicht

geschafft, die Master-Thesis zu bestreiten. Auch für die Bereitstellung entsprechender Ressourcen für

diese Arbeit möchte ich der SVA herzlich danken!

Zuletzt möchte ich meiner Familie und meinen engen Freunden danken. Ohne Eure wohltuenden

Worte und Zusprüche und ständige, bedingungslose Unterstützung wäre mein Weg zur Master-Thesis

deutlich steiniger gewesen. Ihr habt mich stets aufgemuntert und motiviert!

 III

Editorial Notes
Differing from the initially submitted proposal, this thesis primarily focuses on the evaluation of solu-

tions for Kubernetes multi-cluster management rather than solely on kubeanchors. However, kubean-

chors remains a relevant component, as it serves as one of the targets evaluated.

The proposed “concept of evaluation” and “test cases” became the central focus of this thesis. A dif-

ferent approach than the ones suggested in the “state of research” section was followed to implement

kubeanchors, still providing compliance to the mentioned caveats in the proposal.

Additionally, the distribution of pages per Chapter and the Chapter titles from the initially proposed

thesis outline have been adjusted to better suite the final structure of the thesis.

 V

Table of Contents

1. Introduction .. 1

1.1. Motivation ... 1

1.2. Objective .. 1

2. Foundations .. 3

2.1. Definitions ... 3

2.1.1. Common Terms .. 3

2.1.2. Own Definitions .. 3

2.2. Domain .. 5

2.2.1. Kubernetes .. 5

2.2.2. Multi-Cluster Management .. 6

2.3. Multi-Cluster Management Solutions .. 9

2.3.1. Rancher ... 9

2.3.2. kubeanchors ... 10

3. Evaluation Model .. 13

3.1. Model Structure ... 14

3.2. Stakeholders .. 15

3.2.1. Cluster Administrator ... 15

3.2.2. Cluster User .. 15

3.3. Quality Criteria .. 16

3.4. Quality Measures ... 22

3.5. Quality Measurement Scenarios .. 24

3.6. Evaluation Environment .. 25

3.6.1. Structure ... 25

3.6.2. Furter Recommendations ... 26

Preface

 VI

3.7. Conclusion ... 27

4. Evaluation ... 29

4.1. Evaluation Environment Implementation .. 30

4.1.1. Toolchain .. 30

4.1.2. Common Components .. 30

4.1.3. Rancher ... 32

4.1.4. kubeanchors ... 33

4.2. Quality Measurement Scenarios .. 36

4.2.1. Load Testing .. 36

4.2.2. Fault Injection ... 37

4.2.3. Hardware / Operating System Modulation .. 38

4.2.4. Audit Log Review .. 39

4.2.5. Penetration Testing .. 39

4.3. Quality Measurement Scenario Implementations ... 41

4.3.1. Load Testing .. 41

4.3.2. Fault Injection ... 42

4.3.3. Hardware / Operating System Modulation .. 42

4.3.4. Audit Log Review .. 43

4.3.5. Penetration Testing .. 43

4.4. Measurement Results .. 44

4.4.1. System Availability .. 44

4.4.2. Mean Processor Utilization ... 44

4.4.3. Failure Avoidance ... 45

4.4.4. Mean Recovery Time .. 45

4.4.5. System Software Environmental Adaptability .. 46

4.4.6. User Audit Trail Completeness ... 46

 VII

4.5. Conclusion ... 47

5. Discussion ... 49

5.1. Measurement Results .. 49

5.1.1. System Availability .. 49

5.1.2. Mean Processor Utilization ... 50

5.1.3. Failure Avoidance ... 51

5.1.4. Mean Recovery Time .. 52

5.1.5. System Software Environmental Adaptability .. 52

5.1.6. User Audit Trail Completeness ... 53

5.2. Evaluation Model ... 54

5.3. Implementation Considerations .. 56

5.3.1. Evaluation Environment ... 56

5.3.2. Quality Measurement Scenarios ... 57

6. Conclusion .. 59

6.1. Results ... 59

6.2. Outlook .. 59

Appendix

Appendix A: Abbreviations ... 71

Appendix B: Glossary .. 73

Appendix C: Literature Review ... 75

Appendix D: Quality Measures ... 79

Appendix E: Evaluation ... 83

Appendix F: Measurement Results ... 85

Preface

 VIII

Tables
Table 3.1: Search String .. 17

Table 3.2: Quality Criteria Coverage ... 21

Table 3.3: Quality Measures ... 23

Table 4.1: Load Testing Scenario .. 37

Table 4.2: Fault Injection Scenario .. 38

Table 4.3: Hardware / Operating System Modulation Scenario ... 38

Table 4.4: Audit Log Review Scenario ... 39

Table 4.5: Penetration Testing Scenario ... 40

Table 4.6: Evaluation Results .. 47

Figures
Figure 2.1: Kubernetes .. 5

Figure 2.2: Rancher Components ... 9

Figure 2.3: kubeanchors Components .. 10

Figure 3.1: Evaluation Model Structure .. 14

Figure 3.2: Literature Review Steps .. 16

Figure 3.3: Search and Screening Process ... 18

Figure 3.4: Literature Review Results ... 19

Figure 3.5: Quality Measurement Scenario .. 24

Figure 3.6: Evaluation Model .. 25

Figure 4.1: Common Evaluation Environment Deployment ... 31

Figure 4.2: Rancher Evaluation Environment Deployment ... 33

Figure 4.3: kubeanchors Evaluation Environment Deployment ... 34

Figure 4.4: Processor Utilization ... 45

Figure 4.5: Rancher Fault Injection Timeline .. 46

 IX

Figure 5.1: Processor Utilization for kubeanchors .. 50

Code
Code 3.1: Preliminary Search String ... 17

Code 3.2: Search String ... 17

Preface

 X

Formatting Conventions
In this thesis the terms Chapter, Section, Subsection and Paragraph correspond to each level of inden-

tation of headlines. A Chapter is introduced by a headline numbered with a single digit (e. g., “1”).

Within each Chapter, Sections are introduced with two-digit numbering (e. g., “1.1”). Subsections are

further divided with three-digit numbering (e. g., “1.1.1”). Lastly, Paragraphs within Sections or Sub-

sections are marked with lettered headlines (e. g., “a)”). Please note that these terms are spelled up-

percase for distinction.

Different highlighting is used to convey specific meaning for certain terms:

Format Explanation

own definitions Own definitions are terms defined on behalf of this thesis to provide a

more precise distinction of technical terms that may vary across different

literature sources or to establish a common terminology. The full defini-

tions can be found in Subsection 2.1.2.

technical term Technical terms comply to an external definition. If not explained within

the context of this thesis, a short explanation can be found in the glossary

(Appendix B). Terms that require further explanation are outlined in Sub-

section 2.1.1.

proper names Names of organizations, brands, products, software or similar. On first

occurrence a reference for further details is accompanied.

command (Linux) command that can be executed within a shell. The commands are

further described per reference within the text.

fat words Words that should be highlighted for various reasons.

Hyperlink To ease navigation within a digital copy of this document, hyperlinks are

provided.

Abbreviations (abbr.) When abbreviations are introduced, their full form is provided upon first

occurrence. Common abbreviations are not necessarily introduced

within the text. Therefore, a complete list of abbreviations and their full

forms can be found in Appendix A.

Figures leveraging the Unified Modeling Language (UML) use version 2.5.1 [1] of the standard.

 1

1. Introduction

1.1. Motivation

More and more companies are leveraging Kubernetes [2] as their primary solution for container or-

chestration [3]. Kubernetes comes in many flavors, including managed cloud distributions such as Az-

ure Kubernetes Service (AKS) [4], Amazon Elastic Kubernetes Service (EKS) [5], and Google Kubernetes

Engine (GKE) [6], as well as self-hosted distributions like MicroK8s [7], K3s [8], or Red Hat OpenShift

[9].

As a result, managing multiple Kubernetes clusters (clusters) and diverse Kubernetes distributions in-

troduces new challenges. Two key challenges from the perspective of both cluster administrators and

cluster users are the discovery of existing clusters and establishing reliable connections to these clus-

ters across complex network infrastructures.

Solutions like Rancher [10] address these challenges by providing a centralized multi-cluster manage-

ment service, where the clusters are registered. With proper network connectivity to the registered

clusters, the Kubernetes API of these clusters can be relayed to different peers.

However, centralized solutions like Rancher may have reliability concerns. If the management service

experiences an outage or is misconfigured, it becomes unavailable, preventing both the discovery of

and access to the registered clusters.

Therefore, the challenges of cluster discovery and cluster connectivity should be solved without the

downsides of a centralized solution. Thus, a new decentralized approach for multi-cluster management

was developed. This solution is called kubeanchors.

1.2. Objective

To provide evidence or disprove that a multi-cluster management solution with a decentralized archi-

tecture like kubeanchors provides advantages over a solution based on a centralized architecture like

Rancher, a thorough evaluation must be conducted. The objective of this thesis is to develop a generic

evaluation model, applicable to Kubernetes multi-cluster management solutions that address the iden-

tified challenges.

The model will be based on ISO/IEC [11], [12] standards, which provide guidance on developing models

for assessing software quality. A literature review will be carried out to determine quality criteria rel-

evant to the given context.

1. Introduction

 2

Additionally, an evaluation environment will be developed to enable repeatable and standardized

measurements. To further improve reproducibility and simplify the evaluation execution, quality

measurement scenarios will be introduced.

Finally, the evaluation model will be applied to Rancher and kubeanchors as examples to demonstrate

its usage and also to compare both solutions and their different architectures.

 3

2. Foundations

To establish a common understanding of the foundations of this thesis, several definitions are provided

within this Chapter. Additionally, the specific domain of this thesis is further explained so that non-

specialists with fundamental knowledge in information technology can gain an understanding of the

topics covered.

2.1. Definitions

2.1.1. Common Terms

a) Software
The IEEE Standard Glossary of Software Engineering Terminology [13] defines software as “computer

programs, procedures, and possibly associated documentation and data pertaining to the operation

of a computer system” [13, p. 66].

Synonyms:

• software system

b) (Software) Quality
ISO/IEC 25000 [14] defines software quality (quality) as the “capability of software […] to satisfy stated

and implied needs when used under specified conditions” [14, p. 6]. Within this thesis, the quality of

evaluation targets will be measured by the application of an evaluation model, providing quantitative

metrics for various quality criteria.

c) Stakeholder
According to ISO/IEC 25000, a stakeholder is an “individual or organisation having a right, share, claim

or interest in a system […] that meet their needs and expectations” [14, p. 6].

2.1.2. Own Definitions

a) Centralized, Decentralized Architectures
An architecture is defined as “the organizational structure of a system” [13, p. 10]. In a centralized

architecture, the core functionality of a software system is provided through a single central compo-

nent. In contrast, a decentralized architecture distributes the main functionality across multiple com-

ponents.

2. Foundations

 4

b) Evaluation Model, Target, Environment
An evaluation model is a conceptual framework designed to establish comparability between multiple

evaluation targets. It achieves this by mapping one or more numeric values to each target and defining

the methods for calculating these values. The process of evaluation is conducted within a unified eval-

uation environment to provide transparency and repeatability.

c) Quality Criterion
The term quality criterion is commonly used to describe a property of software quality. Quality criteria

can be measured using quality measures and prioritized to determine whether a stakeholder’s require-

ments for a software system are met. Refer to [15, p. 39], [16, pp. 4–5], [17] and Section 3.1 for further

details.

Synonyms:

• Bass et al. [15]: quality attribute

• ISO/IEC 25002 [16]: (quality) (sub-) characteristic

• arc42 Quality Model [18]: quality (attribute), (quality) property

d) Quality Measurement Scenarios
Scenarios for assessing quality measures, refer to Section 3.5.

Synonyms:

• Bass et al.: quality attribute scenario

• arc42 Quality Model: quality scenario

e) Cluster Administrator, Cluster User
Groups of stakeholders, refer to Section 3.2.

f) Peer-to-Peer Relaying
Refer to Paragraph 2.2.2.b).

2.2. Domain

 5

2.2. Domain

This Subsection explains the domain on which the research of this thesis is based. The details provided

address to offer a deeper insight into the topics covered.

2.2.1. Kubernetes

Kubernetes is an orchestrator designed to automate the deployment, scaling, and management of

containerized software [19, Ch. 1]. It provides a robust infrastructure for service discovery, load bal-

ancing, storage orchestration, secret and configuration management, and other common challenges

encountered in software deployment [2]. To achieve this, Kubernetes offers an API that allows users

to define the desired state of various artifacts, such as pods, deployments, services, and ingresses,

which collectively serve as building blocks for modeling applications within a Kubernetes environment.

a) Common Artifacts
Figure 2.1, derived from [20], outlines a typical setup within a Kubernetes cluster spanning across two

hosts. The smallest Kubernetes artifact in this setup is called a pod and consists of one or multiple

containers. The containers within a pod share the same networking namespace and, consequently, the

same IP and ports [19, Ch. 5]. Containers “that run along with the main application container” [21] are

often referred to as sidecar containers.

Figure 2.1: Kubernetes

Pods can be collectively maintained within a deployment, which defines the desired number of pod

replicas and enables dynamic scaling [19, Ch. 10]. To provide a common networking endpoint for the

pods in a deployment, a service can be used [19, Ch. 7].

2. Foundations

 6

For services that need to be accessible by users outside of the cluster environment, an ingress can be

created. An ingress exposes a Kubernetes service via HTTP(S) on a defined endpoint, acting as entry

point to the cluster [19, Ch. 8].

Typically, all Kubernetes artifacts are defined declaratively in one or multiple files, known as Kuber-

netes manifests. These manifests are applied to a cluster via the kube-apiserver [22], which provides

the Kubernetes API, using the kubectl command [23].

b) Helm
Helm [24] bundles multiple Kubernetes manifests in so-called Helm charts, enabling efficient manage-

ment and dynamic templating [19, Ch. 22]. When a Helm chart is applied to a cluster, a Helm deploy-

ment is created, allowing for organized modifications and updates to the contained artifacts.

Ready-to-use Helm charts for various applications can be obtained from Artifact Hub [25]. Thus, Helm

functions as a package manager for Kubernetes, similar to how apt [26] is used for Ubuntu [27] or dnf

[28] for Red Hat Enterprise Linux [29].

c) Container Runtime
To run containers within a Kubernetes cluster, each host in the cluster must have a container runtime

installed. The container runtime acts as the execution environment for containers. To create a con-

tainer, a container image is required, serving as a blueprint that includes all necessary files, executa-

bles, and static configurations needed for the encapsulated software [19, Ch. 2].

Container images can be built from Dockerfiles [30] or pulled from image registries such as Docker

Hub [31]. In Kubernetes, an automated image pull is performed by default when a pod is created, and

the specified container image is not already available within the container runtime [32].

2.2.2. Multi-Cluster Management

When managing not only multiple hosts within a single Kubernetes cluster but also multiple hosts

across multiple clusters, the term multi-cluster management is commonly used in practice [33], [34],

[35]. Multi-cluster management introduces various new challenges, including security and compliance,

resource optimization, monitoring and logging, cross-cluster networking, and service discovery [33],

[34], [35], [36]. This thesis specifically aims to evaluate solutions addressing issues related to service

discovery and cross-cluster networking, particularly in terms of relaying the Kubernetes API.

2.2. Domain

 7

a) Service Discovery
The term service discovery is defined as “a mechanism by which applications […] find each other’s

locations on the network” [37, p. 146]. Consequently, a service discovery system provides a way to

map abstract addresses to concrete application endpoints and retrieve a list of all services. One of the

best-known examples of a service discovery system is the Domain Name System (DNS), which resolves

domain names of hosts on in the internet (or private networks) to their corresponding IP addresses

[19, Ch. 7].

Within Kubernetes, service discovery is facilitated through the service artifact. Each Kubernetes service

maps to one or multiple pods and corresponding their ports, creating an entry within Kubernetes’ in-

ternal DNS, which is typically implemented using CoreDNS [38]. This internal DNS enables pods to re-

solve other pods and services within the cluster1. Each service can be accessed using its service name

or in the format <service-name>.<service-namespace>, optionally followed by “.svc.cluster.lo-

cal” to form a fully qualified hostname [37, p. 157].

When working with multiple Kubernetes clusters, two key service discovery challenges emerge: First,

discovering services across multiple clusters may be required to enable inter-cluster communication.

Second, service discovery for the clusters themselves is necessary to locate and address each cluster

for management purposes. This thesis specifically focuses on evaluating solutions that address the

second challenge.

b) Cross-Cluster Networking
Even if services can be discovered across multiple clusters, reliable network connectivity between clus-

ters is still required for the pods to communicate. This can be challenging, as clusters may be distrib-

uted across various network segments or even geographical locations, potentially leading to connec-

tivity and latency issues [34], [35].

These issues are already addressed by extensions for Container Networking Interface plugins [39] avail-

able for Kubernetes, as well as by dedicated tools. These solutions interconnect clusters by, for exam-

ple, creating overlay networks, providing gateways, establishing VPN tunnels, or introducing virtual

networks on the application layer [40].

1 This is an optional component. If no DNS is installed for a Kubernetes cluster, services can still be resolved using

environment variables. For each Kubernetes service, the variables <service-name>_SERVICE_HOST and <ser-

vice-name>_SERVICE_PORT are injected into the pods [37, p. 157].

2. Foundations

 8

To further narrow the scope of cross-cluster networking to a specific issue, this thesis addresses relay-

ing of the kube-apiserver of multiple clusters to enable access to the Kubernetes API through unified

endpoints. The objective is to ensure that every cluster within a given environment, such as a company,

can be managed using the kubectl command from one or multiple centralized endpoints.

To provide a common term, this functionality is referred to as peer-to-peer relaying throughout this

thesis. Each cluster acts as a peer, as it not only provides its own Kubernetes API, which can be relayed,

but can also relay the API of another cluster.

2.3. Multi-Cluster Management Solutions

 9

2.3. Multi-Cluster Management Solutions

For the challenges outlined in Subsection 2.2.2, existing solutions aim to address these issues. Two

such solutions are Rancher and kubeanchors. Essentially, both solutions provide similar functionalities.

However, Rancher follows a centralized architecture, whereas kubeanchors employs a decentralized

architecture.

2.3.1. Rancher

“Rancher is a Kubernetes management tool to deploy and run clusters anywhere and on any provider.

Rancher can provision Kubernetes from a hosted provider, provision compute nodes and then install

Kubernetes onto them, or import existing Kubernetes clusters running anywhere” [41].

One of Rancher’s capabilities is its web-based user interface (UI), which simplifies the management

and setup of Kubernetes clusters. Existing Kubernetes clusters can be joined to Rancher by deploying

an agent, which connects to the Rancher server [42].

Figure 2.2: Rancher Components

Figure 2.2, leveraging UML and derived from [43], outlines the key components of Rancher. The

Rancher server is typically deployed on a dedicated Kubernetes cluster. Each cluster integrated into

Rancher runs a Rancher agent, which acts as intermediary between the Rancher server and the kube-

apiserver of the cluster where it is installed. Clusters running the Rancher agent are commonly referred

to as downstream clusters [44].

Downstream clusters imported into Rancher, rather than being installed by Rancher, must establish a

connection to the Rancher server via HTTPS. Consequently, a downstream cluster must be able to ac-

tively reach the Rancher server for communication [45]. This applies to all clusters further considered

within this thesis. Both, the Rancher API and Rancher UI provide the capability to discover the down-

stream clusters and to connect to their kube-apiserver via kubectl.

2. Foundations

 10

2.3.2. kubeanchors

As a lightweight alternative to Rancher, kubeanchors is developed by the author of this thesis. Cur-

rently, kubeanchors is available as minimum viable product, providing service discovery for multiple

Kubernetes clusters. Additionally, a concept for peer-to-peer relaying has already been developed but

not yet been implemented.

Figure 2.3: kubeanchors Components

kubeanchors is based on Skupper [46], which “enables secure communication across Kubernetes clus-

ters with no VPNs or special firewall rules” [46]. To achieve this, Skupper establishes a Virtual Applica-

tion Network (VAN). “VANs […] use […] application routers to route communication between […] ap-

plication addresses” [47]. For kubeanchors, Skupper is installed in each Kubernetes cluster that needs

to be discovered, providing a unique application address per cluster.

Skupper enables Kubernetes deployments, and consequently the with the deployment associated

pods, to be exposed to all other clusters within the VAN. To accomplish this, Skupper creates a Kuber-

netes service on each cluster within the VAN, which redirects traffic to the cluster containing the tar-

geted deployment. As a result, the pods of the exposed deployment become reachable across all clus-

ters [48].

On top of Skupper, the kubeanchors API is deployed to each cluster and exposed within the Skupper

network to all other clusters. It connects to the local kube-apiserver to provide information about its

cluster and displays the application address generated by Skupper. The kubeanchors APIs running in

other clusters can then collect this information.

2.3. Multi-Cluster Management Solutions

 11

Consequently, each kubeanchors API can query the kubeanchors APIs of other clusters, enabling de-

centralized service discovery. Additionally, Skupper can be leveraged to expose the kube-apiserver of

a cluster within the VAN, making it accessible to other clusters and thereby providing peer-to-peer

relaying.

Figure 2.3, leveraging UML, presents the described kubeanchors components. The kubeanchors API is

implemented in Python [49] using the FastAPI [50] library. The source code can be obtained from

Appendix E.

 13

3. Evaluation Model

To compare the proposed solutions to the initial problem, a suitable evaluation model is required. In

general, the chosen model must be capable of establishing comparability between selected quality

criteria of evaluation targets. In this case, the evaluation targets are software designed for service

discovery and peer-to-peer relaying in Kubernetes clusters.

Various considerations have been introduced for assessing software quality, e. g.:

• ISO/IEC 25000 introduces the Systems and software Quality Requirements and Evaluation

(SQuaRE) [14] series, which consists of multiple standards (ISO/IEC 25000 – 25099) that define

quality criteria, quality measurement, etc. concerning software quality [14, pp. 7–11].

• Bass et al. propose quality criteria in a scenario-based approach to ensure testability of software

quality [15, pp. 41–44].

• The arc42 Quality Model (Q42) incorporates elements from both Bass et. al and the SQuaRE series

but emphasizes practical application [18], [51].

These approaches will be leveraged in the development of the evaluation model. However, for full

adoption as the evaluation model, the existing approaches are either too complex, overly extensive,

or unsuitable. For example, Q42 consists of 108 quality criteria, though only a subset may be relevant

to the evaluation model. Determining which criteria are important will be addressed during the devel-

opment process.

The SQuaRE series provides a framework for implementing quality models [16]. To ensure a standard-

ized approach, this framework will serve as the foundation of the evaluation model. As a result, the

developed model will be comparable and adhere to a well-defined structure.

Implementing ISO/IEC standards in derived models is a common practice. An example of this is the IT-

Grundschutz [52] model developed by the German Federal Office for Information Security (BSI) [53],

which is based on ISO/IEC 27001 [54]. Similar approaches to implementing ISO/IEC 25000 and its sub-

ordinate standards (ISO/IEC 25001 – 25099) have been proposed by Argotti et al. [55], Barletta et al.

[56], Perdomo and Zapata [57], Polillo [58] and Ravanello et al. [59].

Bass et al. highlight the problem that definitions of quality criteria often lack testability. To resolve

that issue, they introduce a scenario-based concept for the specification of quality criteria require-

ments [15, pp. 42–44]. The evaluation model will adopt this concept.

3. Evaluation Model

 14

3.1. Model Structure

According to ISO/IEC 25002, a “quality model is a defined set of characteristics […] that are quantified

by quality measures that can be used to […] evaluate the quality properties of target entities” [16, p.

8]. If necessary, characteristics can be decomposed into sub-characteristics “that collectively cover […]

that […] characteristic” [16, p. 8], forming a hierarchic structure. The leaf (sub-) characteristics linked

to a quality measure reassemble quality criteria.

For the structure of the evaluation model,

• a set of characteristics and, if necessary, sub-characteristics that describe the evaluation targets

must be chosen,

• for each characteristic and/or sub-characteristic at least one quality measure must be selected,

to conform ISO/IEC 25002 [16]. The following figure derived from the given standard [16, p. 9] outlines

the explained structure:

Figure 3.1: Evaluation Model Structure

3.2. Stakeholders

 15

3.2. Stakeholders

ISO/IEC 25002 states that the importance of quality criteria, and consequently the overall perceived

quality of a software system, may vary depending on the stakeholder [16, Ch. 8.1]. Additionally, Q42

proposes the stakeholder as a dimension of quality [17]. Therefore, the following stakeholders2 will be

considered for the evaluation model:

3.2.1. Cluster Administrator

A cluster administrator is responsible for maintaining the functionality of Kubernetes clusters, includ-

ing networking, storage, and container runtime, from the perspective of the cluster. Their key respon-

sibilities encompass cluster setup and maintenance, resource management, networking, security, stor-

age, and backup and disaster recovery. In multi-cluster management contexts, they handle tasks such

as cluster provisioning and orchestration, cross-cluster networking, centralized governance, and ser-

vice discovery.

The cluster administrator corresponds to the stakeholder group referred to as “architects, developers,

maintainers, and system integrators” [16, p. 14] in ISO/IEC 25002. Skills relevant to this role are typi-

cally covered by the Certified Kubernetes Administrator Certification [60] provided by the Linux Foun-

dation [61].

3.2.2. Cluster User

The cluster user interacts with Kubernetes clusters to run and manage applications. Unlike a cluster

administrator, a cluster user does not manage infrastructure-level tasks but instead focuses on deploy-

ing, scaling, monitoring, and troubleshooting applications within the cluster. In multi-cluster manage-

ment scenarios, cluster users frequently access various environments, such as development, testing,

and staging. They require the ability to discover and connect to clusters and applications across these

environments.

The cluster user aligns with the stakeholder group referred to as “users” [16, p. 13] in ISO/IEC 25002.

Skills relevant to this role are typically covered by the Certified Kubernetes Application Developer Cer-

tification [62] offered by the Linux Foundation.

2 In general, the evaluation model is not limited to the given stakeholders and can be extended.

3. Evaluation Model

 16

3.3. Quality Criteria

For the evaluation model, a set of quality criteria must be selected to encapsulate the relevant attrib-

utes of the evaluation targets within the given context. To ensure a standardized approach, these cri-

teria are chosen from the ISO/IEC 2501n division3. However, two key research questions need to be

addressed:

(R1) Which of the given quality criteria from the ISO/IEC 2501n division are most relevant to appli-

cations providing service discovery and peer-to-peer relaying in Kubernetes clusters?

(R2) How should the chosen quality criteria be prioritized based to the perspective of the stake-

holders identified in Section 3.2?

To answer these questions, a literature review will be conducted (analogous to [55] and [65, Ch. 3–4]).

This review will analyze the statistical occurrence of the criteria outlined in the ISO/IEC 2501n division

within literature focused on service discovery and peer-to-peer relaying in Kubernetes clusters. For a

transparent, reproduceable, and comprehensive approach, the first five steps of the methodology pro-

posed by Greetham [66, pp. 11–21] will be applied:

Figure 3.2: Literature Review Steps

a) Step 1: The Research Question
The research questions have already been implied previously. Thus, no additional work is required for

this step.

b) Step 2: Planning the Search
To identify relevant literature, the databases IEEE Xplore [67], Scopus [68], and Web of Science [69]

will be utilized. In each database, the search will encompass all metadata/fields available.

3 As the given evaluation targets are software solutions, the respective standards are restricted to ISO/IEC 25010
[63] and ISO/IEC 25019 [64].

3.3. Quality Criteria

 17

A preliminary search using search strings related to the SQuaRE series, such as

“Kubernetes” AND (“ISO/IEC 250*” OR “ISO 250*”)

Code 3.1: Preliminary Search String

produce limited results (< 5 per database). Therefore, a broader search strategy will be adopted, ac-

knowledging a specific reference to the ISO/IEC standards will be neglected. Instead, the reference will

be established within the further steps of the review. The revised search string is as follows:

“Kubernetes” AND (

“service discovery” OR “service registry”

OR

“p2p” OR “peer-to-peer” OR “peer to peer”

OR

“multi cluster” OR “multi-cluster” OR “multicluster”

)

Code 3.2: Search String

The following table outlines the structure of the search string:

Part Explanation

“Kubernetes” Limits the search to articles specifically related to Kubernetes.

AND (Combines the additional keywords for contextualization.

“service discovery” OR

“service registry”

Targets articles discussing service discovery with “service regis-

try” included as potential synonym.

OR Indicates alternate terms.

“p2p” or “peer-to-peer”

OR

“peer to peer”

Focuses on articles about peer-to-peer relaying, omitting “relay-

ing” for more results; includes abbreviations and alternate spell-

ings.

OR Indicates alternate terms.

“multi cluster” OR

“multi-cluster” OR

“multicluster”)

Covers articles related to multi-cluster management for a

broader search, omitting “management” for more results; in-

cludes alternate spellings.

) Closes the contextualized search string.

Table 3.1: Search String

3. Evaluation Model

 18

The search results will undergo a four-step review process: starting with filtering by type, language,

and availability, followed by the removal of duplicates, then screening by title and abstract, and finally,

a full-text review. The first step will be handled within the search engines of the databases4, and the

last step will be automated, while the remaining steps will be executed manually. Screening will be

based on the following criteria:

(C1) The document must be a book (chapter), journal article, or conference/proceeding paper.

(C2) The language of the document must be English.

(C3) Access to a full-text PDF file must be available through the respective database. This also in-

cludes references to third-party sources.

(C4) The literature must mainly5 focus on Kubernetes and address at least service discovery, net-

working6 or multi-cluster management.

(C5) The full-text PDF file must be readable by the PyMuPDF [70] Python library.

(C6) The content must allow conclusions related to quality criteria defined in ISO/IEC 25010 [63] or

ISO/IEC 25019 [64].

Criteria (C1) – (C3) will be applied in the filtering step, criterion (C4) in the screening step and criteria

(C5) – (C6) in the full-text review. To summarize, the figure below provides an overview of the review

process:

Figure 3.3: Search and Screening Process

The review process will be documented in an Excel [71] file, with found literature imported into Zotero

[72] to ensure efficient tracking and management. The full-text review will leverage automation

through Python and the PyMuPDF library. For transparency, the Excel file, a Zotero database export,

and the Python code will be referenced in Appendix C.

4 IEEE Xplore only publishes English articles, so no filtering by language is necessary.
5 In this context, "mainly" indicates that the literature is primarily focused on addressing a Kubernetes-related
topic or on extending Kubernetes. Literature that merely uses Kubernetes as a tool is excluded.
6 The topic “networking” is applied as a less stringent criterion compared to “peer-to-peer relaying” to yield a
greater number of matches. This is valid, as peer-to-peer relaying is a subset of networking.

3.3. Quality Criteria

 19

c) Step 3: Searching and Screening
IEEE Xplore, Scopus, and Web of Science were queried on the January 14, 2025, using the specified

search string (refer to Code 3.2). Applying the outlined filters yielded 56 results from IEEE Xplore, 638

from Scopus, and 42 from Web of Science, resulting in a total of 736 documents that satisfied at least

criteria (C1) – (C3). After deduplication, 654 documents remained.

The subsequent manual screening of titles and abstracts, based on criterion (C4), further reduced the

selection to 71 documents. During this screening process, the review of titles and abstracts was halted

as soon as it became clear that the document had no relation to Kubernetes, in order to accelerate the

process.

d) Step 4: Decide What Sources to Use

Figure 3.4: Literature Review Results

The full-text PDF files for the remaining 71 documents were downloaded. Due to inconsistent quality

of the PDF metadata across different sources, ExifTool [73] was used to ensure that each file had at

least an appropriate “title” metadata field. Additionally, PDF files containing whole magazine issues

were cropped to include only the relevant articles using the Apple Preview [74] app.

To streamline the processing of the large number of documents, an automated full-text screening us-

ing Python was conducted. The text extraction from the PDF files was carried out with the PyMuPDF

library7. The extracted text was then normalized by converting all characters to lowercase, removing

hyphens and newlines, consolidating multiple whitespaces into single spaces, and discarding any con-

tent following and including the last occurrence of the word “references”8.

7 PyMuPDF was chosen from the results of a benchmark that compared various PDF libraries for Python [75].
8 The references were discarded to minimize noise in the subsequent statistical analysis of word occurrences.

3. Evaluation Model

 20

During text extraction, one document was excluded as it was unreadable by PyMuPDF, violating crite-

rion (C5). For the remaining readable documents, the extracted and normalized text was scanned for

quality criteria from ISO/IEC 25010 and ISO/IEC 25019 through word matching. At this stage, three

additional documents were excluded for containing no matches, thus violating criterion (C6). In sum,

67 documents were chosen. The results of the full-text scan were written to CSV files and imported

into the documentary Excel file for further analysis within the next step.

e) Step 5: Synthesis
The PDF content-scan also determined the count of documents in which each quality criterion was

mentioned. This resulted in a meta-analysis of the chosen literature. From the number of occurrences,

a coverage metric was calculated for each quality criterion. The following table shows all quality criteria

that appeared at least once9:

Model Characteristic Sub-Characteristic Count of Docs. Coverage

ISO/IEC 25010 reliability availability 51 76.12%

ISO/IEC 25010 flexibility scalability 45 67.16%

ISO/IEC 25010 performance efficiency resource utilization 34 50.75%

ISO/IEC 25019 acceptability experience 32 47.76%

ISO/IEC 25010 performance efficiency capacity 30 44.78%

ISO/IEC 25010 reliability fault tolerance 18 26.87%

ISO/IEC 25019 acceptability compliance 13 19.40%

ISO/IEC 25010 compatibility interoperability 9 13.43%

ISO/IEC 25010 interaction capability operability 9 13.43%

ISO/IEC 25010 flexibility adaptability 7 10.45%

ISO/IEC 25019 beneficialness usability 7 10.45%

ISO/IEC 25010 security integrity 6 8.96%

ISO/IEC 25010 maintainability modularity 5 7.46%

ISO/IEC 25019 beneficialness suitability 5 7.46%

ISO/IEC 25010 compatibility co-existence 2 2.99%

ISO/IEC 25010 maintainability reusability 2 2.99%

ISO/IEC 25010 reliability recoverability 1 1.49%

ISO/IEC 25010 security accountability 1 1.49%

9 The full table, including sub-characteristics that did not appear in any document, is provided in Appendix C.

3.3. Quality Criteria

 21

ISO/IEC 25010 security authenticity 1 1.49%

ISO/IEC 25010 security resistance 1 1.49%

ISO/IEC 25010 maintainability testability 1 1.49%

ISO/IEC 25019 beneficialness accessibility 1 1.49%

Table 3.2: Quality Criteria Coverage

Finally, the initial research questions can be addressed based on the results:

(R1): The quality criteria most relevant to applications providing service discovery and peer-to-peer

relaying in Kubernetes clusters are the sub-characteristics from the ISO/IEC 2501n division that

appeared at least once in the analyzed documents.

(R2): Since all analyzed documents demonstrate a relation to Kubernetes, it is assumed that they

align with the needs of the mentioned stakeholders in Section 3.2. Consequently, the coverage

metric will be used to prioritize the quality criteria within the evaluation model.

For a definition of each quality criterion refer to ISO/IEC 25010 [64, Ch. 3] or ISO/IEC 25019 [64, Ch. 3].

3. Evaluation Model

 22

3.4. Quality Measures

To quantify quality criteria during the evaluation of evaluation targets, quality measures will be em-

ployed. As defined in the ISO/IEC 2502n division, a quality measure “is a measurement function of two

or more values of quality measure elements” [76, p. 4]. Moreover, quality measure elements are de-

fined as “a property and the measurement method for quantifying it, including optionally the trans-

formation by a mathematical function” [76, p. 4].

In simpler terms, a quality measure element is identified by systematically quantifying a specific prop-

erty of an evaluation target. By combining multiple quality measure elements through a mathematical

function, a quality measure is created. Table 3.3, derived from ISO/IEC 25023 [77, App. A], lists the

quality measures selected for the evaluation model, arranged by sub-characteristic priority. Further

details on each quality measure, including their respective mathematical formulas and associated qual-

ity measure elements, can be referenced from the ISO/IEC 2502n division.

To ensure conformance, the selection of quality measures will adhere to the requirements specified in

ISO/IEC 25022 [76, Ch. 2] and ISO/IEC 25023 [77, Ch. 2]10. Justifications for inclusion or exclusion of

certain measures can be obtained from Appendix D.

Model Sub-
Characteristic

Quality Meas-
ure Model

Quality Measures11

ISO/IEC 25010 availability ISO/IEC 25023 system availability G HR

mean down time S R

ISO/IEC 25010 scalability ISO/IEC 25023 undefined12

ISO/IEC 25010 resource
utilization

ISO/IEC 25023 mean processor utilization G HR

mean memory utilization G R

mean I/O devices utilization G R

bandwidth utilization S UD

ISO/IEC 25019 experience ISO/IEC 25022 undefined12

ISO/IEC 25010 capacity ISO/IEC 25023 transaction processing capacity G R

user access capacity G R

10 As the given evaluation targets are software solutions, ISO/IEC 25024 [78] is omitted.
11 G = General, S = Special. HR = Highly recommended, R = Recommended, UD = Used at users’ discretion. Com-
pare to [77, p. 31].
12 ISO/IEC 25010 and ISO/IEC 25019 were reintroduced in 2023 whereas ISO/IEC 25023 and ISO/IEC 25022 have
remained unchanged since 2016. No quality measure has been defined for this sub-characteristic to date.

3.4. Quality Measures

 23

ISO/IEC 25010 fault tolerance ISO/IEC 25023 failure avoidance G HR

redundancy of components S R

ISO/IEC 25019 compliance ISO/IEC 25022 undefined12

ISO/IEC 25010 interoperability ISO/IEC 25023 data formats exchangeability G HR

data exchange protocol sufficiency G R

external interface adequacy S HR

ISO/IEC 25010 operability ISO/IEC 25023 operational consistency G HR

message clarity G R

monitoring capability S UD

ISO/IEC 25010 adaptability ISO/IEC 25023 hardware environmental adaptabil-
ity

G HR

system software environmental
adaptability

G HR

ISO/IEC 25019 usability ISO/IEC 25022 undefined12

ISO/IEC 25010 integrity ISO/IEC 25023 data integrity G HR

internal data corruption prevention G R

ISO/IEC 25010 modularity ISO/IEC 25023 coupling of components G R

ISO/IEC 25019 suitability ISO/IEC 25022 undefined12

ISO/IEC 25010 co-existence ISO/IEC 25023 co-existence with other products G HR

ISO/IEC 25010 reusability ISO/IEC 25023 reusability of assets G HR

ISO/IEC 25010 recoverability ISO/IEC 25023 mean recovery time G HR

backup data completeness S R

ISO/IEC 25010 accountability ISO/IEC 25023 user audit trail completeness G HR

system log retention S R

ISO/IEC 25010 authenticity ISO/IEC 25023 authentication mechanism suffi-
ciency

G HR

ISO/IEC 25010 resistance ISO/IEC 25023 undefined12

ISO/IEC 25010 testability ISO/IEC 25023 test function completeness G R

autonomous testability G UD

ISO/IEC 25019 accessibility ISO/IEC 25022 undefined12

Table 3.3: Quality Measures

3. Evaluation Model

 24

3.5. Quality Measurement Scenarios

Now that the necessary quality criteria and their corresponding quality measures have been identified,

the context for applying these measures remains unclear. To address this, the evaluation model adopts

quality measurement scenarios as introduced by Bass et al. (originally referred to as “quality attribute

scenarios” [15, p. 42]). This concept offers the advantage of making quality criteria not only measura-

ble but also testable. Additionally, quality measurement scenarios provide a more concrete interpre-

tation of quality criteria than their abstract definitions do, and they ensure idempotency in the evalu-

ation process when they are repeated.

By definition [15, pp. 42–43], a quality measurement scenario consists of six parts:

• A stimulus is an event that impacts the evaluation target in a specific way. It can manifest through

various means, such as user or machine operation, cyber-attacks, or system modifications.

• Each stimulus originates from a stimulus source, such as a user or another system. The evaluation

target may handle the stimulus differently depending on its source.

• The stimulus is directed at an artifact, which in this context refers to an evaluation target. By def-

inition, the artifact can be specified more precisely, such as a particular system component, if

needed.

• When a stimulus is directed at an artifact, the artifact generates a response. They should not be

considered purely technical. Responses can also include system modifications made by developers.

• The generation of a response must be quantifiable using a response measure to ensure testability.

In this context, a response measure will be represented by one of the previously chosen quality

measures.

• A quality measurement scenario occurs within a defined environment, specifying the state of the

evaluation targets and influencing their behavior on a stimulus. A unified evaluation environment

is proposed to ensure consistent conditions and reproduceable scenarios.

The following figure, derived from Bass et al. [15, p. 44] outlines the explained structure:

Figure 3.5: Quality Measurement Scenario

3.6. Evaluation Environment

 25

3.6. Evaluation Environment

To ensure consistent conditions for comparative analysis, a unified evaluation environment is pro-

posed. This environment is based on the authors experience and replicates common multi-cluster man-

agement challenges, including hierarchically arranged subnets, network traffic restrictions due to fire-

walls, routing, etc., and variations in Kubernetes distributions.

The evaluation environment is structured into three vertical levels, each of which can be further di-

vided into multiple segments, forming hierarchic structure. Network traffic between these levels and

segments is controlled by a set of predefined rules.

The proposed environment serves as a conceptual blueprint for actual implementation. The following

figure provides an overview of the environment:

Figure 3.6: Evaluation Model

3.6.1. Structure

a) Level 0: Localhost
Level 0 represents the host-network of an admin workstation. This level is typically used for develop-

ment purposes, including hosting short lived, self-managed Kubernetes clusters with tools like kind

[79] or minikube [80].

3. Evaluation Model

 26

b) Level 1: Local Network
In level 1, there are two horizontally divided networks: local network 1 and local network 2. Local

network 1 contains the direct neighbors of the admin workstation, representing the subnet in which

the workstation is located. Local network 2 is an adjacent subnet. To access it from local network 1,

routing through level 2 is required. The environment must allow traffic to pass between local network

1 and local network 2. Within each local network, a self-managed Kubernetes cluster is running.

c) Level 2: Private WAN
The next higher level is the private wide area network (private WAN), where the subnets of level 1 are

routed. The evaluation environment must allow traffic to pass between level 1 and level 2. Within the

private WAN, another self-managed Kubernetes is running.

d) Level 3: Internet
Lastly, level 3 represents the internet. All outgoing traffic from level 2 to level 3 is allowed13, while

incoming traffic to the private WAN is restricted (by a firewall) to connections initiated from hosts in

level 2. On the internet, a managed Kubernetes is running which is exposed to be accessible from the

lower levels.

3.6.2. Furter Recommendations

(E1) To ensure traceability, the evaluation environment implementation must be documented.

(E2) Different distributions of Kubernetes should be used across level 0, level 1 and 2, and level 3:

a. Level 0: Self-managed distributions suited for development purposes, such as kind or min-

ikube, are recommended.

b. Level 1 and 2: These should implement self-managed production-ready distributions like,

MicroK8s [7], K3s [8] or Kubernetes via kubeadm [81].

c. Level 3: A managed distribution, such as AKS [4], EKS [5] or GKE [6], is proposed.

(E3) To increase complexity, different Kubernetes versions can be used.

13 Due to transitivity, this also implies that outgoing traffic from level 0 and level 1 to level 3 is allowed.

3.7. Conclusion

 27

3.7. Conclusion

Altogether, a structured evaluation model was developed to assess software for service discovery and

peer-to-peer relaying in Kubernetes multi-cluster management. To ensure comparability, the model is

built upon standardized frameworks: its structure follows ISO/IEC 25002, quality criteria are system-

atically derived from ISO/IEC 25010 and ISO/IEC 25019, and corresponding quality measures are se-

lected from ISO/IEC 25023. Following the proposal by Bass et al., the quality measures will be captured

within quality measurement scenarios. A unified evaluation environment is proposed to ensure con-

sistent conditions for a comparative analysis.

For conformity with the evaluation model, the proposed elements must be considered. The model

intentionally allows flexibility for custom implementations of both the evaluation model and the iden-

tification methods for the quality measures. To ensure comparability across different implementa-

tions, proper documentation still is necessary.

 29

4. Evaluation

As an example of application of the proposed evaluation model, it is applied to two concrete solutions

for Kubernetes multi-cluster management: Rancher and kubeanchors. Rancher employs a centralized

architecture to manage multiple Kubernetes clusters, whereas kubeanchors follows a fully decentral-

ized architecture to achieve the same objective. Both solutions enable service discovery and relaying

of the kube-apiserver for clusters within a defined scope. For more information about the evaluation

targets, refer to Section 2.3.

The evaluation process incorporates four tasks. First, the concrete implementation of the evaluation

environment is specified. Second, quality measurement scenarios are defined to assess the quality

measures. Third, the implementations of the quality measurement scenarios are described. Finally, the

scenarios are executed, and the results are presented.

To ensure conformity with the evaluation model, each step is documented. Due to the time constraints

for this thesis, only the highly recommended quality measures (refer to Table 3.3) will be applied. Ad-

ditionally, quality measures that rely on a technical specification of the evaluation target are omitted.

As kubeanchors is developed by the author of this thesis, an unbiased assessment of these measures

is not feasible, since the specifications of kubeanchors could be adjusted to comply the measures.

These omitted quality measures are:

• co-existence with other products

• data formats exchangeability

• external interface adequacy

• operational consistency

• authentication mechanism sufficiency

• reusability of assets

Nevertheless, the methodology of this evaluation can be considered as best practice for applying the

evaluation model and can be adopted for further evaluation targets.

4. Evaluation

 30

4.1. Evaluation Environment Implementation

For the execution of the evaluation, a concrete implementation of the environment proposed in Sec-

tion 3.6 is introduced. This Section is divided into four Subsections: the first explains the toolchain used

to set up the evaluation environment, the second defines common components of the environment

and the last two detail the individual adjustments required for each evaluation target. Within this Sec-

tion, figures leveraging UML are presented to outline the deployed components.

4.1.1. Toolchain

At its core, the used toolchain to implement the evaluation environment is composed of Terraform

[82] and Ansible [83]. First, a set of Terraform code is executed against a Red Hat OpenStack Platform

(OpenStack) [84] to provide virtual networks, routers, routing rules, floating IPs and machines. Ter-

raform then generates an Ansible inventory file, which is used to connect to the virtual machines and

install the required applications on these hosts. Once the applications are deployed via Ansible, the

deployment can be validated using tests implemented in Python with the Testinfra [85] framework.

This approach was chosen to ensure a reproduceable implementation, following the infrastructure-as-

code methodology. It results in a set of files that define the desired state of the evaluation environment

implementation. The code can be executed multiple times, consistently producing the desired state of

the evaluation environment. Further details, including used software versions, dependencies and the

implementation code, can be found in Appendix E.

To overcome access restrictions to additional platforms, such as Microsoft Azure [86], and reduce

complexity, level 0 and level 3 of the initially stated evaluation environment are omitted in this imple-

mentation. This omission also simplifies the measurement process, making it easier to reproduce.

4.1.2. Common Components

For both evaluation targets, a common deployment providing base functionalities, including SSH ac-

cess, DNS, and internet access, is introduced. In accordance with the evaluation environment defini-

tion, three virtual networks are created and interconnected by virtual routers. Additionally, the WAN

router is connected to the virtual network “public”, which acts as gateway to the internet in Open-

Stack. The routers are configured with static routes to enable traffic flow between the local networks,

the WAN, and the internet.

4.1. Evaluation Environment Implementation

 31

Within each deployed virtual network, a virtual machine is provisioned for hosting Kubernetes. All vir-

tual machines run on the Ubuntu 24.04 cloud image [87]. An additional management server in the

WAN acts as intermediate to access the servers within the virtual networks. This server has a floating

IP assigned, making it is accessible outside of the virtualization platform.

The management server runs a BIND [88] DNS service to provide name resolution for the virtual net-

works. BIND is configured to forward requests to Google’s [89] public DNS [90], except for the domain

“kubeanchors.internal”. All other hosts are set to use the management server for DNS resolution.

Figure 4.1: Common Evaluation Environment Deployment

4. Evaluation

 32

All internet connections from the local networks must be proxied through the WAN. For this purpose,

a Dante [91] SOCKS proxy is installed on the management server. All other hosts are configured to

make use of the SOCKS proxy for HTTP(S).

Except for the management server, MicroK8s v1.32.1 is installed on each host. The following plugins

are enabled to ensure the base functionality of the Kubernetes cluster: hostpath-storage, rbac,

metallb, and metrics-server.

The client to evaluate the given solutions runs within the virtual network “public”. From there, it can

access the management server, which enables propagation to all other virtual machines.

Figure 4.1 summarizes all specifications. Further details, including the software versions used, can be

found in Appendix E.

4.1.3. Rancher

For Rancher, an additional MicroK8s cluster is deployed on the management server, as Rancher’s ar-

chitecture requires a centralized management cluster to supervise its downstream clusters. Due to

restrictions to the Kubernetes version for the Rancher management cluster, the MicroK8s on the man-

agement server runs on version v1.31.5.

Rancher is deployed on this cluster using the Helm chart “rancher-latest/rancher” [92], which currently

provides Rancher version 2.10.2. The Rancher server is exposed through a Kubernetes ingress to be

reachable via HTTPS. For this purpose, the MicroK8s ingress plugin is enabled in addition to the same

plugins running on the other MicroK8s clusters. It is important to note, that Rancher also can be de-

ployed on a Kubernetes cluster spanning multiple hosts, which would improve reliability.

After setting up the Rancher server, again Terraform is used to register a lease for each Kubernetes

cluster running on the other hosts. This creates an API endpoint on the Rancher server, allowing each

downstream cluster to join. The API endpoints provide Kubernetes manifests that deploy a Rancher

agent on each downstream cluster. Once deployed, the Rancher agents connect to the Rancher server,

enabling cluster management through its API.

In summary, a centralized Rancher server is deployed on the management server, while the other

clusters are joined to it by deploying Rancher agents on each target. This setup provides the discovery

and relaying the kube-apiserver of the target clusters through the Rancher server. Figure 4.2 provides

an overview of this deployment. Additional deployment details can be found in Appendix E.

4.1. Evaluation Environment Implementation

 33

Figure 4.2: Rancher Evaluation Environment Deployment

4.1.4. kubeanchors

For kubeanchors, Skupper is used to interconnect all MicroK8s clusters. To set up Skupper, the Skup-

per CLI is installed on each target host. The CLI is then used to deploy Skupper’s components within

the MicroK8s clusters.

On the WAN server two Skupper join tokens are created and subsequently copied to the local servers

allowing them to establish a link to the WAN server. As a result, the WAN server and the local servers

form a hierarchic topology. It is worth noting that the local clusters additionally could be directly con-

nected, forming a ring topology to enhance improved reliability.

4. Evaluation

 34

Once the clusters are linked, the kubeanchors API is installed on each host and exposed to the other

hosts by annotating the Kubernetes deployments. Skupper detects the annotated deployment and au-

tomatically creates a Kubernetes service on each host, redirecting request through the Skupper net-

work to the corresponding host where the kubeanchors API for that deployment is running. This setup

enables the kubeanchors APIs to query each other in a stateless manner to discover themselves.

Figure 4.3: kubeanchors Evaluation Environment Deployment

4.1. Evaluation Environment Implementation

 35

Also, kubeanchors can access the kube-apiserver of the cluster it is running on. This capability can be

used to relay the kube-apiserver to other hosts.

To access the kubeanchors APIs, an additional Kubernetes service is deployed, exposing the API on a

local TCP port 30000 of each host14. On the management server, HAProxy [93] is installed to combine

and load balance the kubeanchors APIs of each host in a common endpoint. This is not mandatory, as

each Kubernetes host could be accessed directly, but introduces improved reliability and eases access

from outside of the OpenStack environment.

In summary, a decentralized, stateless multi-cluster management solution is employed by leveraging

Skupper and adding functionality by combining its networking capabilities with the kubeanchors API.

Figure 4.3 provides an overview of this deployment, omitting infrastructure related components like

virtual routers for simplicity. Additional deployment details can be found in Appendix E.

14 This port has no special role and could be any other port exposable by Kubernetes.

4. Evaluation

 36

4.2. Quality Measurement Scenarios

Within this Section, multiple scenarios are defined to assess the chosen quality measures for the eval-

uation targets. Each scenario includes concrete recommendations to the parts of a quality measure-

ment scenario described in Section 3.4, along with relevant technical details to ensure accuracy and

effectiveness. These scenarios can also be adopted for the analysis of other evaluation targets beyond

Rancher or kubeanchors if they share similar implementations.

Where applicable, multiple quality measures are grouped within a single scenario. This approach re-

sults in five distinct quality measurement scenarios, each designed to determine the quality measure

elements15 necessary for calculating the respective quality measures.

4.2.1. Load Testing

Response Measure The load testing scenario aims to quantify the system availability and mean

processor utilization measure16.

Artifact Generated load will affect the HTTP APIs provided by Rancher [94] and ku-

beanchors. To delimit the scope of this scenario to service discovery, only

the API endpoints that provide information about all accessible clusters reg-

istered in the evaluation target are called.

Stimulus Source Load will be generated by a simple HTTP client calling the desired API end-

points from multiple threads or processes. It is not mandatory, but possible,

for the calls being executed on multiple hosts.

A number of ten threads or processes is proposed for this scenario but can

be adjusted if needed17.

Stimulus The stimulus manifests through the HTTP calls targeting the API endpoints

of the evaluation targets. The time window of the scenario execution is split

into fixed frames. Within each frame a defined number of calls is generated.

15 For more details about the quality measure elements refer to ISO/IEC 25023.
16 This scenario would also suite other resource utilization measures, like mean memory utilization.
17 The proposed numbers can be altered if necessary. E. g., when transferring the scenario to different targets
than Rancher and kubeanchors.

4.2. Quality Measurement Scenarios

 37

A time window of one minute, with a frame interval of one second and ten

calls per frame, is proposed. Therefore, with ten client threads or processes

calling the API, each client will generate one call per second. Overall, within

one minute, 600 calls are generated17.

Response The system availability will be measured through the results of each request

made to the APIs. A successful call will result in a HTTP response with status

code 200. For each frame containing at least one failed response, either by

not returning status code 200 or not responding at all, the evaluation target

is considered as unavailable.

Within each time frame, the processor utilization is measured to determine

the mean processor utilization.

Environment No changes to the initially proposed environment are necessary.

Table 4.1: Load Testing Scenario

4.2.2. Fault Injection

Response Measure Within the fault injection scenario, the failure avoidance and mean recovery

time are quantified.

Artifact A fault will be injected into what is considered the single point of failure for

each evaluation target. In case of Rancher, the management server is tar-

geted, as it hosts the Rancher server. For kubeanchors, the WAN server is

targeted, since it interconnects the local clusters.

Stimulus Source The fault is generated by a manual reboot of the host representing the sin-

gle point of failure.

Stimulus The stimulus manifests in a reboot of the host representing the single point

of failure.

Response The failure avoidance will be determined by immediately calling the health

check API endpoint of each target after injecting a reboot. Both, Rancher

and kubeanchors, provide a ping API endpoint which returns “pong” if the

service is operational. The test is considered successful, if the call still re-

turns the string “pong” while the reboot is carried out.

4. Evaluation

 38

In contrast, the mean recovery time is determined by measuring the time

from the reboot injection to the first successful call of the ping API endpoint

to the respective target. To determine the latter, calling the ping endpoint

will be repeated after reboot each second18.

Environment No changes to the initially proposed environment are necessary.

Table 4.2: Fault Injection Scenario

4.2.3. Hardware / Operating System Modulation

Response Measure The hardware/operating system modulation scenario aims to quantify the

hardware environmental adaptability and system software environmental

adaptability measure.

Artifact All virtual machines within the evaluation environment are targeted.

Stimulus Source A manual change of the hardware or operating system used to deploy the

evaluation targets on serves as stimulus source. To modulate the hardware,

switching to an ARM-based processor architecture [95] is proposed. For op-

erating system modulation, Debian 12 [96] will be used instead of Ubuntu

24.04 [27]19.

Stimulus The stimulus is represented by a change of the hardware or operating sys-

tem the evaluation target is running on.

Response For each evaluation target the respective setup routines provide a set of

tests to ensure its functionality. These tests are executed after changing the

hardware/operating system and setting up the solutions. If the tests suc-

ceed, the evaluation target is considered adaptable to the new hard-

ware/operating system.

Environment The hardware and/or operating system used are altered.

Table 4.3: Hardware / Operating System Modulation Scenario

18 The proposed numbers can be altered if necessary. E. g., when transferring the scenario to different targets
than Rancher and kubeanchors.
19 Still, other hardware changes or operating systems can be chosen if desired, when for instance applying the
scenario to different targets than Rancher and kubeanchors.

4.2. Quality Measurement Scenarios

 39

4.2.4. Audit Log Review

Response Measure This scenario determines the user audit trail completeness.

Artifact Rancher generates audit logs for every request to its API when audit logging

is enabled [97]. Also, kubeanchors generates a log entry for each call han-

dled by its API. Therefore, the APIs of the services are targeted by this sce-

nario. To delimit the scope of the scenario to service discovery, only the API

endpoints to get information about all accessible clusters registered in the

respective solution, are called.

Stimulus Source A HTTP client will invoke the API endpoints to list all registered clusters

within the evaluation target.

Stimulus The stimulus is realized through the HTTP calls hitting the evaluation tar-

get’s API. For each solution, ten calls targeting the API endpoint for listing

registered clusters are proposed. The number of calls can be adjusted if nec-

essary.

Response All calls to the respective API endpoint are expected to be captured within

the respective log.

Environment No changes to the initially proposed environment are necessary.

Table 4.4: Audit Log Review Scenario

4.2.5. Penetration Testing

Response Measure The data integrity measure is assessed during the penetration testing sce-

nario20.

Artifact Rancher and kubeanchors in its entirety, but especially their data about the

registered clusters, are targeted by this scenario.

Stimulus Source A designated penetration testing team, to which the evaluation targets are

presented as black boxes, must try to penetrate the given solutions and al-

ter the data within them.

20 Also, other integrity measures could be measured within this scenario.

4. Evaluation

 40

Stimulus The stimulus consists of changes to the data within the evaluation targets

caused by the penetration testing team. The protected data items aimed to

be changed consist of information about the clusters to be discovered, as

well as information on how the clusters can be accessed.

Response A report of the penetration testing team about which data items they were

able to change serves as result. If the team was able to change data items

either needed for service discovery or peer-to-peer relaying, these items are

considered corrupted.

Environment No changes to the initially proposed environment are necessary.

Table 4.5: Penetration Testing Scenario

4.3. Quality Measurement Scenario Implementations

 41

4.3. Quality Measurement Scenario Implementations

This Section describes the implementation of the quality measurement scenarios in the evaluation en-

vironment. For each scenario, the following steps are carried out for both Rancher and kubeanchors:

(M1) The evaluation environment for the respective evaluation target is set up.

(M2) The evaluation target is tested for functionality.

(M3) The quality measurement scenarios are executed, and the quality measures are determined.

For the first and second steps, Terraform, Ansible and Testinfra code are provided, as described in

Section 4.1. The following Subsections detail the actions performed to fulfill the third step. The code

implemented can be obtained from Appendix E.

4.3.1. Load Testing

For the load testing scenario, a Python-based load generator is implemented. The script uses the Re-

quests [98] library to send HTTP requests to the evaluation target’s API endpoints for listing all regis-

tered clusters (“/v3/clusters” for Rancher, “/all” for kubeanchors).

The requests are executed concurrently across ten threads, with each thread sending a request every

second21 and enforcing a timeout of one second. Only requests that return within this timeframe and

receive an HTTP 200 status code are considered successful. Any other response or timeout is counted

as a failure. For further analysis, the script generates corresponding output.

While the load generator script is running, the sar [100] command is run on the relevant hosts to

capture the processor utilization. To ensure synchronized execution of the load generator and sar,

two tmux [101] panes are created, and both programs are started in the “synchronize-panes” mode.

Since the virtual machines do not have time synchronization (e. g., via NTP) enabled, the system clocks

of all hosts are manually synchronized using the date [102] command.

As access to Rancher’s API requires authentication [94], an authorized Requests session [103] is cre-

ated and shared across all threads for calling the API. An API key is manually created via the Rancher

UI [104] and passed to the load generator script. Since Rancher runs over HTTPS by default, certificate

validation is disabled22 to minimize differences to kubeanchors, which is tested over HTTP. The sar

command is executed on the management server, as it hosts the targeted API.

21 A GitHub Gist [99] served as template for the scheduling algorithm.
22 The communication remains encrypted but the validity of the TLS certificate is not verified.

4. Evaluation

 42

Except for kubeanchors not requiring authentication (yet) and operating over HTTP, no other signifi-

cant modifications for the load generator script are notable. As kubeanchors is distributed over the

WAN and local servers, the sar command is executed on all these hosts to monitor processor utiliza-

tion across the entire setup.

4.3.2. Fault Injection

The fault injection scenario is triggered by rebooting the potential single point of failure host for each

evaluation target. To monitor the outage, a Python script using the Requests library is implemented

to call the HTTP “/ping” endpoint of each solution’s API. This endpoint provides a basic health check to

determine whether the application is operational. The script sends a request with a timeout of one

second every second. Additionally, the rebooted host is pinged via ICMP [105] to measure the time

until the host becomes available again.

The evaluation target is considered failure avoidant, if the call of the ping API endpoint continues to

succeed while the reboot is in progress. In this case, the recovery time is set to zero. If the target does

not avoid the failure, the recovery time is defined as the duration between the first successful ICMP

ping and the first successful request of the ping API endpoint.

As before, Rancher’s API operates over HTTPS, while kubeanchors operates over HTTP. The differences

are accounted within the Python script. In addition, time synchronization is performed using the date

command, and the execution of all commands (reboot, ping and Python script) is coordinated using

tmux.

4.3.3. Hardware / Operating System Modulation

The hardware/operating system modulation scenario is implemented by replacing the operating sys-

tem image of all hosts in the evaluation environment from Ubuntu 24.04 to Debian 12. As of the time

of writing this thesis, no separate virtualization environment with different hardware, such as ARM-

based processors, is available. Therefore, this scenario focuses solely on operating system modulation.

After setting up the environment and installing all required components, including one of the evalua-

tion targets, several tests are conducted to verify the basic functionality of the setup. These tests in-

clude checking DNS resolution, internet connectivity and, MicroK8s functionality, but more important

checking whether the evaluation target’s API is operational.

The evaluation target is considered adaptable to environmental changes, if all tests pass successfully.

4.3. Quality Measurement Scenario Implementations

 43

4.3.4. Audit Log Review

Within the audit log review scenario, a generator script written in Python is provided to call the API

endpoints for cluster discovery of each evaluation target (“/v3/clusters” for Rancher, “/all” for kubean-

chors) using the Requests library. In total, the script generates ten HTTP calls which are expected to

appear in the respective log of the evaluation target.

For Rancher’s API, authorization is required and provided by passing credentials, manually created in

the Rancher UI, to the script. Additionally, audit logging needs to be enabled for Rancher by a modifi-

cation of its Helm deployment. This adds a sidecar container to each Rancher server pod that writes

the audit logs to the standard output. As kubeanchors does not implement an explicit audit log yet,

API call logs are leveraged for this purpose.

After running the generator script, the respective logs are obtained via the kubectl command from

each pod of the evaluation target. For Rancher, all relevant pods are running on the management

server, whereas for kubeanchors the pods are distributed across the WAN and local servers.

4.3.5. Penetration Testing

As within this thesis no resources for a penetration testing team are available, the execution of this

scenario is omitted.

4. Evaluation

 44

4.4. Measurement Results

The proposed quality measurement scenarios were executed as outlined in Section 4.3. This execution

yielded several results, which are presented in the following Subsections, categorized by quality meas-

ure. No further interpretations are provided in this Section, as the results will be discussed in Chapter

5. The raw measurement results can be obtained from Appendix F.

4.4.1. System Availability

To assess the system availability the load testing scenario was executed. The results show that for both

Rancher and kubeanchors, all requests generated by the load testing script were successfully pro-

cessed. Throughout each one-second interval within the 60-second execution window, both evalua-

tion targets remained fully operational.

Consequently, the “operation time actually provided” precisely matches the “system operation time

specified in the operation schedule” [77, p. 21]. By applying the formula from ISO/IEC 25023, the sys-

tem availability was calculated to be 1.0, representing 100% uptime.

4.4.2. Mean Processor Utilization

More significant insights were gathered from processor utilization measurements during the load test-

ing scenario. For each one-second interval of the execution window, processor utilization was recorded

for both targets:

• For Rancher, processor utilization on a single host with eight virtual CPU cores was captured

(the management server).

• For kubeanchors, processor utilization was measured across three hosts with four virtual CPU

cores (the WAN and the two local servers).

As sar already accounts the amount of available CPU cores, no further calculations are required to

normalize the measures based on CPU count.

Figure 4.4 shows the processor utilization for Rancher and kubeanchors during the scenario execution.

For kubeanchors, the average utilization across all three hosts is displayed. To calculate the mean pro-

cessor utilization as defined in ISO/IEC 25023, the mean of each recorded data point is computed.

Rounded to four decimal places, this results to 0.1027 (or 10.27%) for Rancher and 0.1287 (or 12,87%)

for kubeanchors.

4.4. Measurement Results

 45

Figure 4.4: Processor Utilization

4.4.3. Failure Avoidance

The failure avoidance was obtained from the fault injection scenario. An evaluation target is consid-

ered failure avoidant, when the injected fault did not lead to a service outage. A service outage is

defined by the ping API endpoint of the respective target not responding within one second.

The results show that Rancher did not sustain the reboot of the management server. In contrast, ku-

beanchors continued operating during the reboot of the WAN server. Consequently, applying the for-

mula defined in ISO/IEC 25023, the failure avoidance measures 0.0 (or 0%) for Rancher and 1.0 (or

100%) for kubeanchors.

4.4.4. Mean Recovery Time

For the mean recovery time, the duration from the first successful ICMP ping response from the re-

booted host to the first successful call of the ping API endpoint of each evaluation target was measured

during the fault injection scenario. Since only a single fault has been injected, the mean recovery time

is equal to the recovery time of that fault injection, as defined by ISO/IEC 25023.

For Rancher it took 112 seconds to recover. Figure 4.5 illustrates the corresponding timeline of the

fault injection scenario. In contrast, as the fault injection did not cause an outage for kubeanchors, the

mean recovery time amounts to 0.0 seconds.

0%

5%

10%

15%

20%

25%

30%

0 5 10 15 20 25 30 35 40 45 50 55

Pr
oc

es
so

r U
til

iz
at

io
n

[P
er

ce
nt

ag
e]

Time [Seconds]

Rancher kubeanchors

4. Evaluation

 46

Figure 4.5: Rancher Fault Injection Timeline

4.4.5. System Software Environmental Adaptability

The system software environmental adaptability was assessed during the hardware/operating system

modulation scenario. This scenario involved replacing the operating system of all hosts within the eval-

uation environment from Ubuntu 22.04 to Debian 12. To install Debian within OpenStack, the Debian

cloud image [106] was downloaded and then uploaded to the virtualization platform via Terraform.

The rest of the setup followed the same logic as described in Section 4.1, except for minor Debian-

related adjustments within the Ansible code, such as installing Snapcraft [107] for MicroK8s and

changing the default username from “ubuntu” to “debian".

Both evaluation targets demonstrated full compability with the modified environment. All functional-

ity tests executed against the setup for both Rancher and kubeanchors passed successfully. Therefore,

applying the formula from ISO/IEC 25023, both solutions exhibit a system software environmental

adaptability of 1.0 (or 100%).

4.4.6. User Audit Trail Completeness

To examine the user audit trail completeness, a total of ten requests were generated against Rancher’s

and kubeanchors’ APIs. It was expected that these requests would appear in the audit logs of the re-

spective solutions. For Rancher, the logs of the audit sidecar containers were inspected, while for ku-

beanchors, the API call logs of each node were screened.

For both targets, all requests could be identified within the logs. Consequently, applying the formula

from ISO/IEC 25023 for the user audit trail completeness results a value of 1.0 (or 100%) for both

solutions.

4.5. Conclusion

 47

4.5. Conclusion

The evaluation provided valuable insights into Rancher’s and kubeanchors’ quality criteria. Within a

unified evaluation environment, several quality measurement scenarios were executed to assess the

quality measures defined in the SQuaRE model. This standardized setup ensured consistent and re-

peatable measurements and minimized potential noise in the evaluation, leading to neutral and ob-

jective results.

Table 4.6 concludes the findings captured within this evaluation:

Quality Criterion Quality Measure Results:
Rancher

Results:
kubeanchors

reliability:
availability

system availability 100% 100%

performance efficiency:
resource utilization

mean processor utilization 10.27% 12.87%

reliability:
fault tolerance

failure avoidance 0% 100%

reliability:
recoverability

mean recovery time 112 seconds 0 seconds

flexibility:
adaptability

system software adaptability 100% 100%

security:
accountability

user audit trail completeness 100% 100%

Table 4.6: Evaluation Results

Even though several quality criteria were omitted from the scope of evaluation due to given con-

straints, this study still provides a best practice for applying the model developed in Chapter 3. Addi-

tional quality measurement scenarios can be incorporated to assess the full range of the chosen quality

criteria and quality measures from the SQuaRE model (see Table 3.3).

Discussions about the evaluation results will be introduced in Chapter 5.

 49

5. Discussion

After developing an evaluation model and applying it exemplarily to Rancher and kubeanchors within

this Chapter, the measurement results of the evaluation are discussed. Furthermore, potential weak-

nesses and strengths of the evaluation model are outlined. Finally, advantages and shortcomings of

the implementation considerations within the evaluation are presented.

The following Sections and Subsection are divided into Paragraphs, with each Paragraph representing

a distinct argument to be discussed.

5.1. Measurement Results

Within this Subsection the results for each quality criterion measured in the evaluation will be inter-

preted and suggestions for improvement are listed.

5.1.1. System Availability

The system availability amounts to 100% for both evaluation targets. From this observation it can be

concluded that both solutions are capable of handling at least ten API calls per second successfully.

This also proves, kubeanchors has the same capability in terms of system availability as Rancher.

a) Scenario Parameters
A possible critique to the underlying load testing scenario is that the parameters for the scenario were

chosen solely by the author. Therefore, no external experience concerning load testing is incorporated

within this scenario.

b) Scenario Focus
The scenario designed to determine the quality measure elements required to calculate the system

availability measure according to ISO/IEC 25023. Therefore, the scenario does not include variations

in the number of API calls per second for the load generator.

In the author’s opinion, a more meaningful approach would be to increase the number of API calls and

employ multiple measurements to determine the maximum load the evaluation targets can handle.

But this is not foreseen for the system availability measure in ISO/IEC 25023.

Additionally, executing the load generation from multiple hosts would provide further insights into the

system availability under distributed load conditions.

5. Discussion

 50

5.1.2. Mean Processor Utilization

The results for the mean processor utilization indicate that kubeanchors causes a slightly higher mean

processor utilization than Rancher. This increase could be attributed to the networking overhead in-

troduced by kubeanchors’ decentralized architecture. Each call to one of the deployed kubeanchors

APIs triggers additional calls to all other APIs, generating traffic on the Skupper network, which in turn

contributes to CPU load.

However, the difference in mean processor utilization is only 2.60% higher for kubeanchors compared

to Rancher. Given this small margin, these interpretations should be considered with caution, as the

impact may not be significant in practical scenarios.

Interestingly, the graph for Rancher’s processor utilization shows a significantly higher standard devi-

ation (0.0610) compared to kubeanchors (0.0184), indicating that kubeanchors produced a more con-

sistent load during the scenario execution.

Part of this can be explained by the fact, that the graph for kubeanchors represents the average pro-

cessor utilization across three servers, which naturally smooths out fluctuations. However, even when

looking at the individual standard derivation for each host, these values remain closer to 0.0, further

supporting the conclusion that kubeanchors generates a more stable load distribution:

!!(WAN) = 0.0267 !!(Local	1) = 0.0416 !!(Local	2) = 0.0355

Figure 5.1: Processor Utilization for kubeanchors

0%

5%

10%

15%

20%

25%

30%

0 5 10 15 20 25 30 35 40 45 50 55

Pr
oc

es
so

r U
til

iz
at

io
n

[P
er

ce
nt

ag
e]

Time [Seconds]

WAN Local 1 Local 2

5.1. Measurement Results

 51

a) Scenario Parameters
Analogous to Paragraph 5.1.1.a).

b) Measurement Method
The processor utilization was measured by executing the sar command on each relevant host during

the execution of the scenario. This approach offers the advantage of directly obtaining the processor

utilization from each host without requiring additional calculations involving parameters like the CPU

count.

However, more precise results could be obtained by querying the metrics-server [108] running within

each Kubernetes clusters, as it provides a statistics on the pod level. The downside is that the metrics-

server delivers results in a different unit (milli core), which would require several complex calculations

to derive the processor utilization [108]. Therefore, the sar command was used for the evaluation

within this thesis.

Nevertheless, when including level 3 in the evaluation environment, another approach besides the sar

command, such as leveraging the metrics-server, could become mandatory. This is because the hosts

of managed Kubernetes distributions may not always be directly accessible, making it difficult to exe-

cute commands like sar on these hosts.

5.1.3. Failure Avoidance

For the failure avoidance, Rancher was unable to handle the reboot executed on the management

server during the fault injection scenario. This is expectable, as it causes all pods running the Rancher

server to be stopped simultaneously since they operate on the same host. On the other hand, kubean-

chors was able to withstand the reboot of the WAN server. This is because the HAProxy running on

the management server directs all requests to the remaining available servers.

a) Single Point of Failure Considerations
For Rancher the management server was assumed as the single point of failure for the setup. The fault

injection scenario confirmed this assumption, as the reboot of the management server led to the fail-

ure of the Rancher service. Arguably, for kubeanchors, the management server also could be consid-

ered the single point of failure. A reboot of the management server would cause the HAProxy to be-

come unavailable, resulting in requests not being redirecting to the kubeanchors APIs.

Still, the WAN server is considered the single point of failure for kubeanchors, as the HAProxy is an

optional component in the setup. If HAProxy fails, the individual kubeanchors APIs could still be que-

ried directly, ensuring service availability.

5. Discussion

 52

b) Data Consistency Check
More meaningful results would be available if the failure avoidance check included the data presented

by the APIs during the failure injection. If data consistency were a mandatory criterion for the failure

avoidance check, also kubeanchors’ results would be considered faulty. This is because API calls que-

rying all available clusters (using the “/all” endpoint) would only show the cluster the API is running on.

This is caused by the clusters not being able to access each other’s APIs when the WAN server, which

interconnects the clusters, is unavailable. As a result, the reboot of the WAN server leads to incomplete

data being returned by the APIs of the local servers.

c) Scenario Repetition
The scenario was executed only once, but it could be run multiple times to provide more statistically

significant results.

5.1.4. Mean Recovery Time

For Rancher a mean recovery time of 112 seconds was measured, which is significantly longer than

the mean recovery time for kubeanchors. Yet, kubeanchors mean recovery time is set to 0.0 seconds,

as the fault injected within the respective scenario was avoided by kubeanchors. Therefore, this value

must be considered less representative.

a) Scenario Ontology
As outlined, setting the mean recovery time for kubeanchors to 0.0 seconds due its resistance to the

injected fault and comparing this value to a real measure, provided by Rancher’s outage, does not

offer a meaningful correlation between the two values. Instead, faults should be injected that also

cause kubeanchors to fail. Alternatively, the pass criteria for the evaluation targets’ failure avoidance

could be changed, e. g., by including data consistency (see 5.1.3.b)). Additionally, multiple faults could

be introduced for both evaluation targets to providing a broader range of measurement results.

b) Scenario Repetition
Analogous to Paragraph 5.1.3.c)

5.1.5. System Software Environmental Adaptability

Both evaluation targets show being adaptable to a different software environment. The altered envi-

ronment, which included Debian 12 as the operating system, was introduced within the hardware/op-

erating system modulation scenario.

5.1. Measurement Results

 53

a) Operating System Considerations
As Ubuntu is a Debian-based distribution [109], it is not surprising that the evaluation targets were

also able to run on Debian. Additionally, other operating systems like Red Hat Enterprise Linux or

Microsoft Windows Server [110] could be considered for a broader test coverage.

b) Containers
As the majority of components in the evaluation targets run within containers, their portability to other

operating systems is expected. Nevertheless, it is reasonable to validate this through testing.

5.1.6. User Audit Trail Completeness

The user audit trail completeness amounts to 100% for both evaluation targets. This means, each re-

quest generated is logged within the respective logs.

a) Scenario Parameters
Analogous to Paragraph 5.1.1.a).

b) Reviewed Logs
For Rancher a real audit log was reviewed to calculate the presented results. The generation of the

audit logs had to be enabled within the Helm deployment of Rancher. Contrary, only the API call logs

of kubeanchors were screened for the user audit trail completeness. By time of carrying out the meas-

urements, kubeanchors does not offer an audit log incorporating user information, as kubeanchors in

general has no authentication implemented yet. To provide more comparable results, for kubeanchors

also audit logs should be scanned, as soon as available.

c) Integration In Load Testing Scenario
Currently, an own scenario was developed to check the user audit trail completeness. The measure-

ment of the user audit trail completeness could also be integrated into the load testing scenario, re-

ducing the total amount of scenarios.

5. Discussion

 54

5.2. Evaluation Model

This Section discusses the evaluation model developed in Chapter 3. While the model is already well-

engineered and well-founded, based on thorough research and modeling using ISO/IEC standards and

additional literature, there is still room for improvement.

a) Practical Advice
The evaluation model, combined with the exemplary evaluation of Rancher and kubeanchors, aims to

provide guidance on applying the SQuaRE model in practice. This was an objective of this thesis, as the

model’s documentation only provides limited resources on this topic. Q42 has also recognized these

shortcomings of the SQuaRE model [111].

Even though the evaluation within Chapter 4 does not cover the full extent of the evaluation model, it

still provides an overview of its application. While the scope of the evaluation was limited to Rancher

and kubeanchors, the model can be easily adapted to additional evaluation targets with minimal ef-

fort.

b) Model Structure
The structure of the evaluation model follows the hierarchic framework outlined in ISO/IEC 25002.

Both Q42 and the author argue that grouping sub-characteristics within broader characteristics is not

strictly necessary, as the sub-characteristics themselves provide sufficient information for quality as-

sessment. Additionally, some sub-characteristics could arguably belong to multiple characteristics,

which may lead to confusion [111].

Nevertheless, the evaluation model adheres to this structure to maintain conformity with ISO/IEC

25002. While this is not inherently a disadvantage, it adds complexity and makes the model harder to

understand.

c) Literature Review
As a central part of the evaluation model, a literature review was conducted to choose the quality

criteria relevant to the given context. This review leveraged three databases: IEEE Xplore, Scopus, and

Web of Science. Also, ACM [112] and Google Scholar [113] were considered for the review but then

excluded, as

• ACM’s literature export could not be successfully imported into Zotero with complete

metadata, and the library only allowed filtering for one literature type at a time.

• Google Scholar provided only limited filtering options, which were unsuitable for the review,

and did not support a literature export.

5.2. Evaluation Model

 55

Since several steps were performed manually, possibility of human error cannot be ruled out. To en-

sure transparency and traceability, Appendix C includes all resources to replicate the screening pro-

cess. The only limitation may arise from restricted access to certain literature depending on the insti-

tution accessing it.

Upon reviewing the literature review results, it was observed that the full-text review considered only

British English spellings of the quality criteria, such as “time behaviour” or “analysability”. For more

comprehensive results, the full-text review should have also included the American English spelling.

Additionally, searching for corresponding noun forms of quality criteria written as adjective could have

further improved the review.

It is unsurprising that certain quality criteria, such as “freedom from health risk”, yielded no results, as

their names are more complex than others. It should be considered how to equalize this difference.

One possible approach is to analyze the statistical occurrence of the quality criteria names in English

literature, using tools like Google Books Ngram Viewer [114] or NGRAMS [115].

Finally, leveraging a machine learning model or AI-based approach for the full-text screening could

enhance the process by incorporating context from each literature source. Otherwise, each document

must be manually reviewed to ensure no relevant mentions of quality criteria are overlooked.

d) Stakeholder Priorities
Within the evaluation model, several stakeholders relevant to the given context were identified. It is

assumed that the literature review sufficiently captures their requirements. However, this assumption

remains speculative. To ensure that stakeholders' needs are accurately considered, conducting a sur-

vey or expert interviews would have been a more reliable approach.

e) Quality Measures
Since the SQuaRE series provides only limited guidance on how to determine the quality measures

precisely, this thesis introduced quality measurement scenarios to bridge that gap. However, these

scenarios include interpretations by the author. As a result, it still is possible that they do not fully align

with the definitions provided in the SQuaRE series. Nevertheless, the quality measurement scenarios

offer a reproduceable, testable, and easy-to-understand approach for obtaining the desired quality

measures, which can otherwise be difficult to grasp within the SQuaRE series.

5. Discussion

 56

5.3. Implementation Considerations

Several considerations were taken for the implementation of the evaluation environment and the qual-

ity measurement scenarios. The following Subsections provide justifications for the decisions made.

5.3.1. Evaluation Environment

a) Omissions
During the development of the evaluation environment, the decision was made to omit level 0 and

level 3 from the initially proposed setup. This decision was based on several advantages that arise from

excluding these levels.

By leaving out level 3, dependence on a managed Kubernetes provider, such as Microsoft Azure, is

avoided. As a result, only an OpenStack platform is required to set up the implementation of the en-

vironment. Additionally, since a cluster on level 3 would run within the internet, access is typically less

restricted compared to a cluster within an internal network.

The omission of level 0 is justified by its lack of additional value compared to level 1. A level 0 host,

such as one running minikube, would have been deployed within the same network as local server 1.

Therefore, apart from the difference in the Kubernetes distribution, it would not have introduced any

significant distinction from the local clusters.

b) NAT
Within the evaluation environment implementation, NAT was expected functioning for packages being

directed from a local network to the internet via the WAN router. Instead, NAT only functioned for

packages originating from hosts within the WAN. This issue was bypassed by introducing the manage-

ment server to provide a SOCKS proxy and DNS resolving.

In an ideal setup, the local servers would be able to access the internet directly. It is assumed that a

bug in OpenStack caused this behavior, as a similar behavior is described in [116] for Ubuntu’s

Charmed OpenStack [117].

c) NTP
During the measurements, it was observed that not all servers were synchronized in time. This issue

was temporarily addressed by using the date command simultaneously on all hosts to set the time. A

more reliable solution would have been to configure time synchronization via NTP. However, the date

command was preferred to proceed with the measurements quickly.

5.3. Implementation Considerations

 57

d) Docker Pull Limit
As the OpenStack used for the evaluation runs within a company network, a pull limit of 10 image pulls

per hour from Docker Hub for the entire network restricted the setup of MicroK8s and deployment of

containers [118]. This limitation was bypassed by collecting all required container images into an ar-

chive file and importing it into MicroK8s during the setup using the microk8s image import com-

mand. In an ideal setup, this workaround would not be necessary.

5.3.2. Quality Measurement Scenarios

a) Protocol Differences
All calls to Rancher’s API used HTTPS, while calls to kubeanchors were made over HTTP. This intro-

duced a more complex setup for Rancher, as HTTPS includes encryption via TLS. To minimize differ-

ences, certificate validation was disabled for requests to Rancher. However, TLS encryption within

HTTPS still adds a significant overhead.

In an improved kubeanchors setup, TLS would also be enabled by exposing its API through a Kuber-

netes ingress with TLS configured via cert-manager [119], which is the same setup used by Rancher.

Adopting this setup would provide more comparable results at the API.

Nevertheless, this difference was tolerated within the evaluation, as the protocol (HTTP/HTTPS) is in-

herent to the ontology of the respective solutions.

b) Authentication
Similar to the protocol differences outlined in Paragraph 5.3.2.b), Rancher requires authentication be-

fore accessing the API endpoint to list all registered clusters, whereas kubeanchors does not yet im-

plement authentication. This difference was also tolerated as part of the solutions ontology.

However, authentication is planned for kubeanchors, and the measurements should be repeated once

the implementation is completed. Repeating the measurements is straightforward, as they were de-

signed to be reproduceable.

c) Peer-to-Peer Relaying for kubeanchors
Currently, the kubeanchors API primarily provides service discovery for Kubernetes clusters. Peer-to-

peer relaying can be achieved by exposing the kube-apiserver of the targeted cluster via the Skupper

network. However, this feature was not considered in the evaluation. No significant changes are ex-

pected for the quality measurement scenarios when incorporating explicit measurements for peer-to-

peer relaying, as this only adds additional API endpoints for kubeanchors.

5. Discussion

 58

The load testing scenario and audit log review scenario would be adjusted to include these endpoints,

while the fault injection scenario would remain unchanged. The hardware/operating system modula-

tion scenario only would include additional tests for kubeanchors, since Rancher’s peer-to-peer relay-

ing already is tested.

 59

6. Conclusion

6.1. Results

In summary, an evaluation model was developed to assess the quality of solutions for Kubernetes

multi-cluster management, focusing on service discovery of Kubernetes clusters and peer-to-peer re-

laying of the Kubernetes API. The model adheres to various ISO/IEC standards from the SQuaRE series,

ensuring standardization and comparability. A literature review was conducted to identify relevant

quality criteria.

To ensure repeatable and unbiased measurement results, a unified evaluation environment was de-

veloped using the infrastructure-as-code methodology. Measurements are performed within repro-

duceable quality measurement scenarios to further enhance reliability and consistency of the results.

For the demonstration of the evaluation model, Rancher and kubeanchors were evaluated using the

developed framework. The evaluation was successfully conducted, yielding results that enable a direct

comparison of the two solutions and provide insights into their quality criteria.

Surprisingly, kubeanchors, which by time of writing this thesis only represents a minimum viable prod-

uct, could keep up with Rancher in terms of availability, adaptability, and accountability. Even though

kubeanchors caused a higher processor utilization (2.6%), it outperformed Rancher in terms of failure

avoidance. However, Rancher still provides significantly more features than kubeanchors and is a fully

mature solution, suitable for production-use.

The discussion highlighted that the quality measurement scenarios require further refinement to pro-

duce more meaningful and insightful results. Several omissions present opportunities for enhancing

the evaluation model. Nevertheless, the evaluation model is already mature enough to be adopted for

further measurements.

6.2. Outlook

The thesis leaves room for improvement in several areas. On the one hand, kubeanchors can be fur-

ther improved, for example, by…

• … implementing an API endpoint to relay the Kubernetes API of a cluster to any other cluster

or an admin client.

• … implementing a heartbeat-based caching mechanism to overcome segmentations within the

Skupper network.

6. Conclusion

 60

• … redesigning the network topology of the Skupper network to improve reliability.

• … updating to Skupper v2, which, at the time of writing, is still a preview release, to take ad-

vantage of new features and optimizations.

• … rewriting kubeanchors in a resource-efficient language like Go [120] or Rust [121] for better

performance and memory management.

• … providing an open-source development repository on GitHub [122] to encourage commu-

nity contributions and facilitate further development.

On the other hand, the evaluation model can be improved, for instance, by…

• … re-running the literature review, including the proposed corrections within the discussion,

to ensure that the most relevant and recent quality criteria are included.

• … incorporating the omitted quality criteria, which rely on the specification of the evaluation

target.

• … implementing an optional level 3 for the evaluation environment by providing Terraform

code for a managed cluster like AKS, EKS and/or GKE.

• … providing instructions, a script, or an appliance to set up an OpenStack platform for deploy-

ing the evaluation environment on.

Finally further evaluation targets, such as Paralus [123] or Portainer [124], can be assessed to gain

additional insights into the behavior of the evaluation model and the evaluated targets, contributing

to broader applicability and validation of the model.

 61

Literature
[1] Object Management Group, Unified Modeling Language, formal/2017-12-05, Dec. 2017. [Online].

Available: https://www.omg.org/spec/UML/2.5.1/About-UML

[2] The Kubernetes Authors, “Production-Grade Container Orchestration,” Kubernetes. Accessed:
Mar. 04, 2025. [Online]. Available: https://kubernetes.io/

[3] The Linux Foundation, “CNCF Annual Survey 2023,” CNCF. Accessed: Mar. 06, 2025. [Online]. Avail-
able: https://www.cncf.io/reports/cncf-annual-survey-2023/

[4] Microsoft, “Managed Kubernetes Service (AKS),” Microsoft Azure. Accessed: Jan. 31, 2025.
[Online]. Available: https://azure.microsoft.com/en-us/products/kubernetes-service

[5] Amazon Web Services, Inc., “Amazon Elastic Kubernetes Service,” aws. Accessed: Jan. 31, 2025.
[Online]. Available: https://aws.amazon.com/eks/

[6] Google, “Google Kubernetes Engine (GKE),” Google Cloud. Accessed: Jan. 31, 2025. [Online]. Avail-
able: https://cloud.google.com/kubernetes-engine

[7] Canonical Ltd., “The effortless Kubernetes,” MicroK8s. Accessed: Jan. 31, 2025. [Online]. Available:
http://microk8s.io

[8] K3s Project Authors, “Lightweight Kubernetes,” K3s. Accessed: Jan. 31, 2025. [Online]. Available:
https://k3s-io.github.io/

[9] Red Hat, Inc., “Red Hat OpenShift enterprise application platform,” Red Hat. Accessed: Mar. 06,
2025. [Online]. Available: https://www.redhat.com/en/technologies/cloud-computing/openshift

[10] Rancher, “Innovate Everywhere,” Rancher Labs. Accessed: Mar. 05, 2025. [Online]. Available:
http://www.rancher.com

[11] ISO, “ISO - International Organization for Standardization,” ISO. Accessed: Mar. 06, 2025. [Online].
Available: https://www.iso.org/home.html

[12] IEC, “International Electrotechnical Commission,” International Electrotechnical Commission. Ac-
cessed: Mar. 06, 2025. [Online]. Available: https://www.iec.ch/homepage

[13] “IEEE Standard Glossary of Software Engineering Terminology,” IEEE Std 61012-1990, pp. 1–84,
Dec. 1990, doi: 10.1109/IEEESTD.1990.101064.

[14] ISO/IEC JTC 1/SC 7, ISO/IEC 25000:2014, Systems and software engineering — Systems and soft-
ware Quality Requirements and Evaluation (SQuaRE) — Guide to SQuaRE, Mar. 2014.

[15] L. Bass, P. Clements, and R. Kazman, Software Architecture in Practice, Fourth Edition. in SEI Series
in Software Engineering. Boston Amsterdam Munich: Addison-Wesley, Professional, 2021. ISBN:
978-0-13-688609-9

[16] ISO/IEC JTC 1/SC 7, ISO/IEC 25002:2024, Systems and software engineering — Systems and soft-
ware Quality Requirements and Evaluation (SQuaRE) — Quality model overview and usage, Mar.
2024.

Literature

 62

[17] G. Starke, “How to Use this Site,” arc42 Quality Model. Accessed: Jan. 03, 2025. [Online]. Available:
https://quality.arc42.org/how-to-use-this-site/

[18] G. Starke, “Home,” arc42 Quality Model. Accessed: Dec. 08, 2024. [Online]. Available: https://qual-
ity.arc42.org/

[19] B. Burns, K. Hightower, J. Beda, and L. Evenson, Kubernetes. Heidelberg: dpunkt.verlag, 2023. ISBN:
978-3-96910-962-5

[20] Leon Alexander Kraß, “Erweiterung des CAP-Theorems zur Charakterisierung von (Micro-)Service-
Architekturen.” Aug. 02, 2021. [Online]. Available: https://leonkrass.dev/bachelor-thesis

[21] The Kubernetes Authors, “Sidecar Containers,” Kubernetes. Accessed: Mar. 04, 2025. [Online].
Available: https://kubernetes.io/docs/concepts/workloads/pods/sidecar-containers/

[22] The Kubernetes Authors, “kube-apiserver,” Kubernetes. Accessed: Feb. 22, 2025. [Online]. Availa-
ble: https://kubernetes.io/docs/reference/command-line-tools-reference/kube-apiserver/

[23] The Kubernetes Authors, “Command line tool (kubectl),” Kubernetes. Accessed: Mar. 04, 2025.
[Online]. Available: https://kubernetes.io/docs/reference/kubectl/

[24] Helm Authors and The Linux Foundation, “The package manager for Kubernetes,” Helm. Accessed:
Feb. 23, 2025. [Online]. Available: https://helm.sh/

[25] The Linux Foundation, “Find, install and publish Cloud Native packages,” Artifact Hub. Accessed:
Mar. 04, 2025. [Online]. Available: https://artifacthub.io/

[26] ubuntuusers.de, “APT,” ubuntuusers. Accessed: Mar. 04, 2025. [Online]. Available:
https://wiki.ubuntuusers.de/APT/

[27] Canonical Ltd., “Enterprise Open Source and Linux,” Ubuntu. Accessed: Feb. 22, 2025. [Online].
Available: https://ubuntu.com/

[28] Red Hat, Inc., “Managing software with the DNF tool,” Red Hat Documentation. Accessed: Mar.
04, 2025. [Online]. Available: https://docs.redhat.com/en/documentation/red_hat_enter-
prise_linux/9/html-single/managing_software_with_the_dnf_tool/index

[29] Red Hat, Inc., “Red Hat Enterprise Linux operating system,” Red Hat. Accessed: Mar. 02, 2025.
[Online]. Available: https://www.redhat.com/en/technologies/linux-platforms/enterprise-linux

[30] Docker, Inc., “Dockerfile overview,” Docker Documentation. Accessed: Mar. 04, 2025. [Online].
Available: https://docs.docker.com/build/concepts/dockerfile/

[31] Docker, Inc., “Docker Hub Container Image Library,” Docker Hub. Accessed: Mar. 04, 2025.
[Online]. Available: https://hub.docker.com

[32] The Kubernetes Authors, “Images,” Kubernetes. Accessed: Mar. 04, 2025. [Online]. Available:
https://kubernetes.io/docs/concepts/containers/images/

[33] S. Morellato, “How to Solve Common Kubernetes Multi-Cluster Deployment Issues,” DEV Commu-
nity. Accessed: Mar. 05, 2025. [Online]. Available: https://dev.to/simone_morellato/how-to-
solve-common-kubernetes-multi-cluster-deployment-issues-35fa

 63

[34] S. Azulay, “Multi-cluster Kubernetes: Benefits, Challenges and Tools,” groundcover. Accessed:
Mar. 05, 2025. [Online]. Available: https://www.groundcover.com/blog/kubernetes-multi-cluster

[35] Tigera, Inc., “Multi-Cluster Kubernetes: A Practical Guide,” Tigera. Accessed: Mar. 05, 2025.
[Online]. Available: https://www.tigera.io/learn/guides/kubernetes-networking/kubernetes-
multi-cluster/

[36] J. Walker, “Mastering Kubernetes Management: Challenges and Best Practices,” Rafay. Accessed:
Mar. 05, 2025. [Online]. Available: https://rafay.co/the-kubernetes-current/mastering-kuber-
netes-management-challenges-and-best-practices/

[37] S. Dubey and M. J. Kulkarni, Hands-On Kubernetes, Service Mesh and Zero-Trust: Build and Manage
Secure Applications Using Kubernetes and Istio (English Edition), First Edition. London: BPB Online,
2023. ISBN: 93-5551-867-6

[38] The CoreDNS Authors and The Linux Foundation, “CoreDNS: DNS and Service Discovery,” CoreDNS.
Accessed: Mar. 05, 2025. [Online]. Available: https://coredns.io/

[39] The Kubernetes Authors, “Network Plugins,” Kubernetes. Accessed: Mar. 05, 2025. [Online]. Avail-
able: https://kubernetes.io/docs/concepts/extend-kubernetes/compute-storage-net/network-
plugins/

[40] G. Arbezzano and A. Palesandro, “Simplifying multi-clusters in Kubernetes,” CNCF. Accessed: Mar.
05, 2025. [Online]. Available: https://www.cncf.io/blog/2021/04/12/simplifying-multi-clusters-in-
kubernetes/

[41] SUSE Rancher, “What is Rancher?,” Rancher. Accessed: Mar. 05, 2025. [Online]. Available:
https://ranchermanager.docs.rancher.com/

[42] Rancher, “Use Cases of Rancher Prime,” Rancher Labs. Accessed: Mar. 05, 2025. [Online]. Availa-
ble: http://www.rancher.com/use-cases

[43] SUSE Rancher, “Rancher Server and Components,” Rancher. Accessed: Mar. 05, 2025. [Online].
Available: https://ranchermanager.docs.rancher.com/reference-guides/rancher-manager-archi-
tecture/rancher-server-and-components

[44] SUSE Rancher, “Communicating with Downstream User Clusters,” Rancher. Accessed: Mar. 05,
2025. [Online]. Available: https://ranchermanager.docs.rancher.com/reference-guides/rancher-
manager-architecture/communicating-with-downstream-user-clusters

[45] SUSE Rancher, “Port Requirements,” Rancher. Accessed: Mar. 05, 2025. [Online]. Available:
https://ranchermanager.docs.rancher.com/getting-started/installation-and-upgrade/installa-
tion-requirements/port-requirements

[46] The Skupper Authors, “Skupper - Multicloud communication,” Skupper. Accessed: Feb. 23, 2025.
[Online]. Available: https://skupper.io/

[47] The Skupper Authors, “Skupper - Skupper overview,” Skupper. Accessed: Mar. 05, 2025. [Online].
Available: https://skupper.io/docs/overview/index.html

[48] The Skupper Authors, “Skupper - Getting started,” Skupper. Accessed: Mar. 07, 2025. [Online].
Available: https://skupper.io/start/index.html#step-5-expose-your-services

Literature

 64

[49] Python Software Foundation, “Welcome to Python.org,” Python. Accessed: Jan. 30, 2025. [Online].
Available: https://www.python.org/about/

[50] S. Ramírez, “FastAPI,” FastAPI. Accessed: Mar. 05, 2025. [Online]. Available: https://fastapi.tian-
golo.com/

[51] Gernot Starke, “Quality Models,” arc42 Quality Model. Accessed: Jan. 07, 2025. [Online]. Available:
https://quality.arc42.org/articles/quality-models

[52] Bundesamt für Sicherheit in der Informationstechnik, “IT-Grundschutz,” Bundesamt für Sicherheit
in der Informationstechnik. Accessed: Dec. 14, 2024. [Online]. Available:
https://www.bsi.bund.de/DE/Themen/Unternehmen-und-Organisationen/Standards-und-Zer-
tifizierung/IT-Grundschutz/it-grundschutz.html?nn=128656

[53] Bundesamt für Sicherheit in der Informationstechnik, “Bundesamt für Sicherheit in der Informati-
onstechnik,” Bundesamt für Sicherheit in der Informationstechnik. Accessed: Mar. 06, 2025.
[Online]. Available: https://www.bsi.bund.de/DE/Home/home_node.html

[54] ISO/IEC JTC 1/SC 27, ISO/IEC 27001:2022, Information security, cybersecurity and privacy protec-
tion - Information security management systems - Requirements, Oct. 2022.

[55] Y. Argotti, Y. Kenfaoui, C. Baron, A. Abran, and P. Esteban, “An Operational Quality Model of Em-
bedded Software Aligned with ISO 25000,” ACM Trans. Embed. Comput. Syst., vol. 24, no. 1, pp.
1–41, Jan. 2025, doi: 10.1145/3691642.

[56] V. S. Barletta, D. Caivano, L. Colizzi, G. Dimauro, and M. Piattini, “Clinical-chatbot AHP evaluation
based on ‘quality in use’ of ISO/IEC 25010,” Int. J. Med. Inf., vol. 170, p. 104951, Feb. 2023, doi:
10.1016/j.ijmedinf.2022.104951.

[57] W. Perdomo and C. M. Zapata, “Software quality measures and their relationship with the states
of the software system alpha,” Ingeniare Rev. Chil. Ing., vol. 29, no. 2, pp. 346–363, Jun. 2021, doi:
10.4067/S0718-33052021000200346.

[58] R. Polillo, “Quality Models for Web [2.0] Sites: A Methodological Approach and a Proposal,” in
Current Trends in Web Engineering, vol. 7059, A. Harth and N. Koch, Eds., in Lecture Notes in Com-
puter Science, vol. 7059. , Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 251–265. doi:
10.1007/978-3-642-27997-3_25.

[59] A. Ravanello, J.-M. Desharnais, L. E. Bautista Villalpando, A. April, and A. Gherbi, “Performance
Measurement for Cloud Computing Applications Using ISO 25010 Standard Characteristics,” in
2014 Joint Conference of the International Workshop on Software Measurement and the Interna-
tional Conference on Software Process and Product Measurement, Oct. 2014, pp. 41–49. doi:
10.1109/IWSM.Mensura.2014.33.

[60] The Linux Foundation, “Certified Kubernetes Administrator (CKA),” Linux Foundation - Education.
Accessed: Jan. 22, 2025. [Online]. Available: https://training.linuxfoundation.org/certifica-
tion/certified-kubernetes-administrator-cka/

[61] The Linux Foundation, “Linux Foundation - Decentralized innovation, built with trust,” Linux Foun-
dation. Accessed: Mar. 06, 2025. [Online]. Available: https://www.linuxfoundation.org

 65

[62] The Linux Foundation, “Certified Kubernetes Application Developer (CKAD),” Linux Foundation -
Education. Accessed: Jan. 10, 2025. [Online]. Available: https://training.linuxfoundation.org/certi-
fication/certified-kubernetes-application-developer-ckad/

[63] ISO/IEC JTC 1/SC 7, ISO/IEC 25010:2023, Systems and software engineering — Systems and soft-
ware Quality Requirements and Evaluation (SQuaRE) — Product quality model, Nov. 2023.

[64] ISO/IEC JTC 1/SC 7, ISO/IEC 25019:2023, Systems and software engineering — Systems and soft-
ware Quality Requirements and Evaluation (SQuaRE) — Quality-in-use model, Nov. 2023.

[65] M. Oriol Hilari, J. Franch Gutiérrez, and J. Marco Gómez, “Monitoring the quality of service to sup-
port the service based system lifecycle,” Universitat Politècnica de Catalunya, 2015. doi:
10.5821/dissertation-2117-95669.

[66] B. Greetham, How to Write Your Literature Review. in Palgrave Study Skills. London: Bloomsbury
Academic, 2020. ISBN: 978-1-352-01104-3

[67] IEEE, “IEEE Xplore,” IEEE Xplore. Accessed: Jan. 11, 2025. [Online]. Available: https://ieeex-
plore.ieee.org

[68] Elsevier B.V., “Welcome to Scopus Preview,” Scopus. Accessed: Jan. 11, 2025. [Online]. Available:
https://www.scopus.com

[69] Clarivate, “Welcome,” Web of Science. Accessed: Jan. 11, 2025. [Online]. Available: http://webof-
science.com/

[70] Artifex, “Welcome to PyMuPDF,” PyMuPDF 1.25.2 documentation. Accessed: Jan. 22, 2025.
[Online]. Available: https://pymupdf.readthedocs.io/en/latest/

[71] Microsoft, “Micorsoft Excel,” Microsoft 365. Accessed: Jan. 30, 2025. [Online]. Available:
https://www.microsoft.com/de-de/microsoft-365/excel

[72] Corporation for Digital Scholarship, “Your personal research assistant,” Zotero. Accessed: Jan. 12,
2025. [Online]. Available: https://www.zotero.org/

[73] exiftool/exiftool. (Jan. 22, 2025). Perl. ExifTool by Phil Harvey. Accessed: Jan. 22, 2025. [Online].
Available: https://github.com/exiftool/exiftool

[74] Apple Inc., “Vorschau – Benutzerhandbuch für den Mac,” Apple Support. Accessed: Jan. 23, 2025.
[Online]. Available: https://support.apple.com/de-de/guide/preview/welcome/mac

[75] py-pdf/benchmarks. (Jan. 21, 2025). Python. py-pdf. Accessed: Jan. 22, 2025. [Online]. Available:
https://github.com/py-pdf/benchmarks

[76] ISO/IEC JTC 1/SC 7, ISO/IEC 25022:2016, Systems and software engineering — Systems and soft-
ware Quality Requirements and Evaluation (SQuaRE) — Measurement of quality in use, Jun. 2016.

[77] ISO/IEC JTC 1/SC 7, ISO/IEC 25023:2016, Systems and software engineering — Systems and soft-
ware Quality Requirements and Evaluation (SQuaRE) — Measurement of system and software
product quality, Jun. 2016.

[78] ISO/IEC JTC 1/SC 7, ISO/IEC 25024:2015, Systems and software engineering — Systems and soft-
ware Quality Requirements and Evaluation (SQuaRE) — Measurement of data quality, Oct. 2015.

Literature

 66

[79] The Kubernetes Authors, “kind,” kind. Accessed: Aug. 18, 2024. [Online]. Available:
https://kind.sigs.k8s.io/

[80] The Kubernetes Authors, “minikube,” minikube. Accessed: Aug. 18, 2024. [Online]. Available:
https://minikube.sigs.k8s.io/docs/

[81] The Kubernetes Authors, “Kubeadm,” Kubernetes. Accessed: Feb. 01, 2025. [Online]. Available:
https://kubernetes.io/docs/reference/setup-tools/kubeadm/

[82] HashiCorp, Inc., “Automate infrastructure on any cloud with Terraform,” HashiCorp Terraform
Community. Accessed: Feb. 22, 2025. [Online]. Available: https://www.terraform.io/

[83] Red Hat, Inc., “Ansible community documentation,” Ansible Documentation. Accessed: Feb. 22,
2025. [Online]. Available: https://docs.ansible.com/

[84] Red Hat, Inc., “Red Hat OpenStack Platform,” Red Hat Customer Portal. Accessed: Feb. 22, 2025.
[Online]. Available: https://access.redhat.com/products/red-hat-openstack-platform

[85] Philippe Pepiot, “testinfra 10.1.2.dev2+ge1eb9c1 documentation,” Testinfra test your infrastruc-
ture. Accessed: Feb. 22, 2025. [Online]. Available: https://testinfra.readthedocs.io/en/latest/

[86] Microsoft, “Cloud Computing Services,” Microsoft Azure. Accessed: Feb. 22, 2025. [Online]. Avail-
able: https://azure.microsoft.com/en-us

[87] Canonical Ltd., “Ubuntu 24.04 LTS (Noble Numbat) daily [20250221],” Ubuntu. Accessed: Feb. 22,
2025. [Online]. Available: https://cloud-images.ubuntu.com/noble/current/

[88] Internet Systems Consortium, Inc., “BIND 9,” Internet Systems Consortium. Accessed: Mar. 06,
2025. [Online]. Available: https://www.isc.org/bind/

[89] Google, “Google - Alles über Google, unsere Unternehmenskultur und Neuigkeiten zum Unterneh-
men,” Google. Accessed: Mar. 06, 2025. [Online]. Available: https://about.google/intl/ALL_de/

[90] Google, “Google Public DNS,” Google for Developers. Accessed: Feb. 22, 2025. [Online]. Available:
https://developers.google.com/speed/public-dns

[91] Inferno Nettverk A/S, “Dante - A free SOCKS server,” inet Dante. Accessed: Mar. 06, 2025. [Online].
Available: https://www.inet.no/dante/

[92] Resistance, “rancher 2.10.2 · Resistance/rancher-latest,” Artifact Hub. Accessed: Feb. 23, 2025.
[Online]. Available: https://artifacthub.io/packages/helm/rancher-latest/rancher

[93] Willy Tarreau, “The Reliable, High Perf. TCP/HTTP Load Balancer,” HAProxy. Accessed: Feb. 23,
2025. [Online]. Available: https://www.haproxy.org/

[94] SUSE Rancher, “Previous v3 Rancher API Guide,” Rancher. Accessed: Feb. 22, 2025. [Online]. Avail-
able: https://ranchermanager.docs.rancher.com/v2.10/api/v3-rancher-api-guide

[95] Arm Ltd, “Architecture,” Arm | The Architecture for the Digital World. Accessed: Feb. 22, 2025.
[Online]. Available: https://www.arm.com/architecture

[96] SPI and others, “The Universal Operating System,” Debian. Accessed: Feb. 22, 2025. [Online]. Avail-
able: https://www.debian.org/index.en.html

 67

[97] SUSE Rancher, “Enabling the API Audit Log to Record System Events,” Rancher. Accessed: Feb. 22,
2025. [Online]. Available: https://ranchermanager.docs.rancher.com/v2.10/how-to-guides/ad-
vanced-user-guides/enable-api-audit-log

[98] MMXVIX, “Requests: HTTP for HumansTM,” Requests 2.32.3 documentation. Accessed: Feb. 24,
2025. [Online]. Available: https://requests.readthedocs.io/en/latest/

[99] Allan Freitas, the-best-way-to-repeatedly-execute-a-function-every-x-seconds-in-python. Ac-
cessed: Feb. 24, 2025. [Online]. Available: https://gist.github.com/al-
lanfreitas/e2cd0ff49bbf7ddf1d85a3962d577dbf

[100] Michael Kerrisk, “sar(1) - Linux manual page,” man7.org. Accessed: Feb. 24, 2025. [Online].
Available: https://man7.org/linux/man-pages/man1/sar.1.html

[101] tmux/tmux. Accessed: Feb. 24, 2025. [Online]. Available:
https://github.com/tmux/tmux/wiki/Home

[102] Michael Kerrisk, “date(1) - Linux manual page,” man7.org. Accessed: Feb. 24, 2025. [Online].
Available: https://man7.org/linux/man-pages/man1/date.1.html

[103] MMXVIX, “Advanced Usage,” Requests 2.32.3 documentation. Accessed: Feb. 24, 2025.
[Online]. Available: https://requests.readthedocs.io/en/latest/user/advanced/

[104] SUSE Rancher, “API Keys,” Rancher. Accessed: Feb. 24, 2025. [Online]. Available:
https://ranchermanager.docs.rancher.com/reference-guides/user-settings/api-keys

[105] Michael Kerrisk, “ping(8) - Linux manual page,” man7.org. Accessed: Feb. 24, 2025. [Online].
Available: https://man7.org/linux/man-pages/man8/ping.8.html

[106] SPI and others, “Debian Official Cloud Images,” Debian. Accessed: Feb. 23, 2025. [Online].
Available: https://cdimage.debian.org/images/cloud/

[107] Canonical Ltd., “Snapcraft - Snaps are universal Linux packages,” Canonical Snapcraft. Ac-
cessed: Feb. 26, 2025. [Online]. Available: https://snapcraft.io/

[108] kubernetes-sigs/metrics-server. (Feb. 21, 2025). Go. Kubernetes SIGs. Accessed: Feb. 21, 2025.
[Online]. Available: https://github.com/kubernetes-sigs/metrics-server

[109] Canonical Ltd., “Debian,” Ubuntu. Accessed: Mar. 02, 2025. [Online]. Available: https://ub-
untu.com/community/governance/debian

[110] Microsoft, “Windows Server Operating System,” Microsoft. Accessed: Mar. 02, 2025. [Online].
Available: https://www.microsoft.com/en-us/windows-server

[111] G. Starke, “Shortcomings of ISO 25010,” arc42 Quality Model. Accessed: Mar. 03, 2025.
[Online]. Available: https://quality.arc42.org/articles/iso-25010-shortcomings

[112] ACM, Inc., “ACM Digital Library.” Accessed: Jan. 11, 2025. [Online]. Available:
https://dl.acm.org/

[113] Google, “Google Scholar,” Google Scholar. Accessed: Mar. 03, 2025. [Online]. Available:
https://scholar.google.com/

Literature

 68

[114] Google, “Ngram Viewer Exports,” Google Books. Accessed: Jan. 21, 2025. [Online]. Available:
https://storage.googleapis.com/books/ngrams/books/datasetsv3.html

[115] NGRAMS, “NGRAMS,” NGRAMS. Accessed: Jan. 21, 2025. [Online]. Available:
https://ngrams.dev

[116] G. Petralia, “[OVN] SNAT only happens for subnets directly connected to a router,” Ubuntu
neutron package. Accessed: Mar. 03, 2025. [Online]. Available:
https://bugs.launchpad.net/bugs/2051935

[117] Canonical Ltd., “Charmed OpenStack,” Canonical OpenStack. Accessed: Mar. 06, 2025.
[Online]. Available: https://ubuntu.com/openstack

[118] Docker, Inc., “Pulls,” Docker Documentation. Accessed: Mar. 03, 2025. [Online]. Available:
https://docs.docker.com/docker-hub/usage/pulls/

[119] The cert-manager Authors and The Linux Foundation, “Cloud native certificate management,”
cert-manager. Accessed: Mar. 03, 2025. [Online]. Available: https://cert-manager.io/

[120] Google, “Build simple, secure, scalable systems with Go,” The Go Programming Language. Ac-
cessed: Mar. 06, 2025. [Online]. Available: https://go.dev/

[121] Rust Team, “A language empowering everyone to build reliable and efficient software,” Rust
Programming Language. Accessed: Mar. 06, 2025. [Online]. Available: https://www.rust-lang.org/

[122] GitHub, Inc., “GitHub · Build and ship software on a single, collaborative platform,” GitHub.
Accessed: Mar. 06, 2025. [Online]. Available: https://github.com/

[123] The Linux Foundation, “Paralus,” Paralus. Accessed: Mar. 06, 2025. [Online]. Available:
https://paralus.io/

[124] Portainer, “Kubernetes and Docker Container Management Software,” portainer.io. Accessed:
Mar. 06, 2025. [Online]. Available: https://www.portainer.io/

[125] Gartner, Inc., “Information Technology Gartner Glossary,” Gartner. Accessed: Mar. 07, 2025.
[Online]. Available: https://www.gartner.com/en/information-technology/glossary

[126] National Institute of Standards and Technology, “Glossary | CSRC,” NIST. Accessed: Mar. 07,
2025. [Online]. Available: https://csrc.nist.gov/glossary/term/information_technology

[127] Tigera, Inc., “Kubernetes CNI,” Tigera. Accessed: Mar. 07, 2025. [Online]. Available:
https://www.tigera.io/learn/guides/kubernetes-networking/kubernetes-cni/

[128] Python Software Foundation, “csv — CSV File Reading and Writing,” Python documentation.
Accessed: Mar. 07, 2025. [Online]. Available: https://docs.python.org/3/library/csv.html

[129] Dataprise, “IT Terms Glossary | Information Technology Definitions,” Dataprise. Accessed:
Mar. 07, 2025. [Online]. Available: https://www.dataprise.com/it-glossary/

[130] Fortinet, Inc., “What is ICMP (Internet Control Message Protocol)?,” Fortinet. Accessed: Mar.
07, 2025. [Online]. Available: https://www.fortinet.com/resources/cyberglossary/internet-con-
trol-message-protocol-icmp

 69

[131] D. L. Mills and M/A-COM Linkabit, “Network Time Protocol (NTP),” Internet Engineering Task
Force, Request for Comments RFC 958, Sep. 1985. doi: 10.17487/RFC0958.

[132] Michael Kerrisk, “ssh(1) - Linux manual page,” man7.org. Accessed: Mar. 07, 2025. [Online].
Available: https://man7.org/linux/man-pages/man1/ssh.1.html

[133] Microsoft, “Visual Studio Code - Code Editing. Redefined,” Visual Studio Code. Accessed: Mar.
07, 2025. [Online]. Available: https://code.visualstudio.com/

[134] OpenAI, “ChatGPT,” ChatGPT. Accessed: Mar. 07, 2025. [Online]. Available:
https://chatgpt.com

[135] Microsoft, “Microsoft Copilot: Ihr KI-Begleiter,” Microsoft Copilot. Accessed: Mar. 07, 2025.
[Online]. Available: https://copilot.microsoft.com

[136] DeepL SE, “DeepL Übersetzer: Der präziseste Übersetzer der Welt,” DeepL. Accessed: Mar. 07,
2025. [Online]. Available: https://www.deepl.com/translator

[137] Microsoft, “Microsoft Word,” Microsoft 365. Accessed: Mar. 07, 2025. [Online]. Available:
https://www.microsoft.com/de-de/microsoft-365/word

[138] JGraph Ltd, “Security-first diagramming for teams,” draw.io. Accessed: Mar. 07, 2025. [Online].
Available: https://app.diagrams.net/

 71

Appendix A: Abbreviations
Sorted alphabetically:

Abbrev. Full Form Notes

AI Artificial Intelligence

AKS Azure Kubernetes Service

API Application Programming Interface

BSI German Federal Office for Information
Security

Ger.: Bundesamt für Sicherheit in der
Informationstechnik

Cluster Kubernetes cluster usage depends on context: refer to
highlighting

CPU Central Processing Unit

CSV Comma Separated Values

DNS Domain Name System

EKS Amazon Elastic Kubernetes Service

GKE Google Kubernetes Engine

HTTP(S) Hypertext Transfer Protocol (Secure)

ICMP Internet Control Messaging Protocol

NTP Network Time Protocol

OpenStack Red Hat OpenStack Platform Other OpenStack distributions exist;
these are mentioned explicitly

PDF Portable Document Format

Private WAN private wide area network

Q42 arc42 Quality Model

quality software quality usage depends on context: refer to
highlighting

SOCKS Socket Secure

Software software system usage depends on context: refer to
highlighting

SQuaRE Systems and Software Quality Re-
quirements and Evaluation

SSH Secure Shell

TLS Transport Layer Security

Appendix A

 72

UI user interface

UML Unified Modeling Language

VAN Virtual Application Network

VPN Virtual Private Network

 73

Appendix B: Glossary
Terms, which were not explained within context, sorted alphabetically:

Term Context Description

AI General “Artificial intelligence (AI) applies advanced analysis and
logic-based techniques, including machine learning, to
interpret events, support and automate decisions, and
take actions” [125].

API General “An application programming interface (API) is an inter-
face that provides programmatic access to service func-
tionality and data within an application or a database. It
can be used as a building block for the development of
new interactions with humans, other applications or
smart devices” [125].

Container Kubernetes “A method for packaging and securely running an appli-
cation within an application virtualization environment.
Also known as an application container or a server ap-
plication container” [126].

Container Networking
Interface

Kubernetes The “Container Network Interface (CNI) is a framework
for dynamically configuring networking resources. […]
When used with Kubernetes, CNI can […] automatically
configure the network between pods” [127].

CPU General “The component of a computer system that controls
the interpretation and execution of instructions. […]
The term ‘processor’ is often used to refer to a CPU”
[125].

CSV General “The […] CSV […] format is the most common import
and export format for spreadsheets and databases”
[128].

DNS General A “service for accessing a networked computer by name
rather than by numerical, (IP) address” [129].

HTTP General “HTTP […] is […] the protocol that governs the transfer
of documents between servers and clients on the World
Wide Web” [125].

HTTPS General “HTTPS […] is an extension of Hypertext Transport Pro-
tocol (HTTP) that provides security services for transac-
tion confidentiality, authenticity and integrity between
HTTP servers and clients” [125].

Appendix B

 74

ICMP General “The Internet Control Message Protocol (ICMP) is a pro-
tocol that devices within a network use to communicate
problems with data transmission” [130].

Infrastructure-as-Code General “The process of managing and provisioning an organiza-
tion’s IT infrastructure using machine-readable configu-
ration files, rather than employing physical hardware
configuration or interactive configuration tools” [126].

NTP General A “protocol for synchronizing a set of network clocks us-
ing a set of distributed clients and servers” [131].

PDF General A “type of formatting that enables files to be viewed on
a variety [of] computers regardless of the program orig-
inally used to create them” [129].

SOCKS General “An Internet protocol to allow client applications to
form a circuit-level gateway to a network firewall via a
proxy service” [126].

SSH General SSH “is a program for logging into a remote machine
and for executing commands on a remote machine. It is
intended to provide secure encrypted communications
between two untrusted hosts over an insecure net-
work” [132].

TLS General “Internet-based transaction security provided by the Se-
cure Sockets Layer (SSL) protocol” [125].

UI General “The physical or logical means by which users interact
with a system, device or process” [126].

VPN General “A virtual network built on top of existing networks that
can provide a secure communications mechanism for
data and IP information transmitted between net-
works” [126].

 75

Appendix C: Literature Review

Device

The code was developed and executed on a MacBook Pro (2023) with:

Chip: Apple M2 Pro

Memory: 32 GB

OS: macOS Sequoia 15.3.1

Also, the manual review steps were conducted on this device.

Review Protocol Excel File

The review protocol Excel file can be obtained from https://leonkrass.dev/master-thesis or the at-

tached SD card.

Zotero Database Export

The review Zotero database export file can be obtained from https://leonkrass.dev/master-thesis or

the attached SD card.

Automated Full-Text Review Code

The Python code for the automated full-text review can be obtained from https://leonkrass.dev/mas-

ter-thesis or the attached SD card. The code was developed using JetBrains PyCharm Professional

Edition version 2024.3.4 with the following plugins:

• .ignore

• Direnv Integration

• JetBrains AI Assistant

• Kubernetes

• NixIDEA

• Rainbow Brackets

• Space

https://leonkrass.dev/master-thesis
https://leonkrass.dev/master-thesis
https://leonkrass.dev/master-thesis
https://leonkrass.dev/master-thesis

Appendix C

 76

Full Quality Criteria Table

Model Characteristic Sub-Characteristic Count of Docs. Coverage

ISO/IEC 25010 reliability availability 51 76.12%

ISO/IEC 25010 flexibility scalability 45 67.16%

ISO/IEC 25010 performance efficiency resource utilization 34 50.75%

ISO/IEC 25019 acceptability experience 32 47.76%

ISO/IEC 25010 performance efficiency capacity 30 44.78%

ISO/IEC 25010 reliability fault tolerance 18 26.87%

ISO/IEC 25019 acceptability compliance 13 19.40%

ISO/IEC 25010 compatibility interoperability 9 13.43%

ISO/IEC 25010 interaction capability operability 9 13.43%

ISO/IEC 25010 flexibility adaptability 7 10.45%

ISO/IEC 25019 beneficialness usability 7 10.45%

ISO/IEC 25010 security integrity 6 8.96%

ISO/IEC 25010 maintainability modularity 5 7.46%

ISO/IEC 25019 beneficialness suitability 5 7.46%

ISO/IEC 25010 compatibility co-existence 2 2.99%

ISO/IEC 25010 maintainability reusability 2 2.99%

ISO/IEC 25010 reliability recoverability 1 1.49%

ISO/IEC 25010 security accountability 1 1.49%

ISO/IEC 25010 security authenticity 1 1.49%

ISO/IEC 25010 security resistance 1 1.49%

ISO/IEC 25010 maintainability testability 1 1.49%

ISO/IEC 25019 beneficialness accessibility 1 1.49%

ISO/IEC 25010 functional suitability functional completeness 0 0.00%

ISO/IEC 25010 functional suitability functional correctness 0 0.00%

Literature Review

 77

ISO/IEC 25010 functional suitability functional appropriate-
ness 0 0.00%

ISO/IEC 25010 performance efficiency time behavior 0 0.00%

ISO/IEC 25010 interaction capability appropriateness recog-
nizability 0 0.00%

ISO/IEC 25010 interaction capability learnability 0 0.00%

ISO/IEC 25010 interaction capability user error protection 0 0.00%

ISO/IEC 25010 interaction capability user engagement 0 0.00%

ISO/IEC 25010 interaction capability inclusivity 0 0.00%

ISO/IEC 25010 interaction capability user assistance 0 0.00%

ISO/IEC 25010 interaction capability self-descriptiveness 0 0.00%

ISO/IEC 25010 reliability faultlessness 0 0.00%

ISO/IEC 25010 security confidentiality 0 0.00%

ISO/IEC 25010 security non-repudiation 0 0.00%

ISO/IEC 25010 maintainability analyzability 0 0.00%

ISO/IEC 25010 maintainability modifiability 0 0.00%

ISO/IEC 25010 flexibility installability 0 0.00%

ISO/IEC 25010 flexibility replaceability 0 0.00%

ISO/IEC 25010 safety operational constraint 0 0.00%

ISO/IEC 25010 safety risk identification 0 0.00%

ISO/IEC 25010 safety fail safe 0 0.00%

ISO/IEC 25010 safety hazard warning 0 0.00%

ISO/IEC 25010 safety safe integration 0 0.00%

ISO/IEC 25019 freedom from risk freedom from economic
risk 0 0.00%

ISO/IEC 25019 freedom from risk freedom from environ-
mental and societal risk 0 0.00%

ISO/IEC 25019 freedom from risk freedom from health risk 0 0.00%

ISO/IEC 25019 freedom from risk freedom from human
life risk 0 0.00%

ISO/IEC 25019 acceptability trustworthiness 0 0.00%

 79

Appendix D: Quality Measures
As special quality measures are optional by definition (see [76, Ch. 2], [77, Ch. 2]), the following justi-

fications provided are kept concise and may reflect the authors perspective. The entries are sorted

analogous to Table 3.2.

Selected Special Quality Measures

a) Resource Utilization: Bandwidth Utilization
The evaluation targets resemble management solutions, where low bandwidth utilization is crucial to

ensure the managed software can utilize the majority of available bandwidth.

b) Fault Tolerance: Redundancy Of Components
In distributed systems, such as the evaluation targets, the redundancy of components is a key measure

for assessing a systems fault tolerance.

c) Operability: Monitoring Capability
For multi-cluster management, the monitoring capability is vital. Decentralized architectures rely on

centralized monitoring planes to aggregate and correlate data from numerous endpoints, making this

measure essential its targets.

d) Recoverability: Backup Data Completeness
Without adequate backups, system recovery is impossible. Consequently, backup data completeness

is an important consideration.

e) Accountability: System Log Retention
System logs are invaluable for troubleshooting and auditing access in administrative tools like the eval-

uation targets. Therefore, the system log retention is a relevant measure.

Omitted Special Quality Measures

a) Capacity: User Access Increase Adequacy
Adding a large number of users is generally uncommon for the specified evaluation targets, except in

environments such as those managed by large cloud providers. Thus, user access increase adequacy is

excluded from the evaluation model by default. If, for instance, a large cloud provider uses the evalu-

ation model, the quality measure still can be incorporated.

Appendix D

 80

b) Fault Tolerance: Mean Fault Notification Time
Since the given evaluation targets usually do not involve notification functions, the mean fault notifi-

cation time is omitted. Instead, the monitoring capability measure is included, as monitoring systems

generally provide this functionality.

c) Operability: Functional Customizability
The evaluation targets provide a defined set of functionalities for administrative tasks. Management

solutions are commonly selected for their defined range of features, which generally do not require

the level of customization often associated with end-user software.

d) Operability: User Interface Customizability
Analogous to Paragraph c).

e) Operability: Undo Capability
Analogous to Paragraph c).

f) Operability: Understandable Categorization of Information
Management solutions, such as the defined evaluation targets, demand an extensive expertise regard-

ing the presented information. As a result, prior understanding of the given information is essential.

g) Operability: Appearance Consistency
Analogous to Paragraph c).

h) Operability: Input Device Support
Analogous to Paragraph c).

i) Adaptability: Operational Environment Adaptability
The given definition for “operational environment” in ISO/IEC 25023 lacks clarity: The term “opera-

tional environment” is not further described. Consequently, this measure is dropped.

j) Integrity: Buffer Overflow Prevention
Buffer overflow prevention is classified as an internal measure. Since the evaluation model focuses

solely on external measures, this measure is excluded.

k) Modularity: Cyclomatic Complexity Adequacy
Analogous to Paragraph j).

Quality Measures

 81

l) Reusability: Coding Rules Conformity
Analogous to Paragraph j).

m) Authenticity: Authentication Rules Conformity
Analogous to Paragraph 0.

n) Testability: Test Restartability
Analogous to Paragraph 0.

 83

Appendix E: Evaluation

Device

The code was developed and executed on a MacBook Pro (Nov. 2023) with:

Chip: Apple M3 Pro

Memory: 36 GB

OS: macOS Sequoia 15.3.1

Code

The code for the evaluation can be obtained from https://leonkrass.dev/master-thesis or the attached

SD card. It code was developed using Visual Studio Code [133] version 1.97.2 with the following

plugins:

Pylance

Python

Python Debugger

Remote - SSH

YAML

1Password

Ansible

direnv

German Language Pack for Visual Studio Code

HashiCorp HCL

HashiCorp Terraform

Nix IDE

Prettier - Code formatter

Remote - SSH: Editing Configuration Files

Remote Explorer

Refer to the README.md file in the “kubeanchors” folder to obtain further information on the project

structure, project usage and on the software versions used. Used third-party libraries are referenced

within the source code.

For the hardware/operating system modulation scenario, a separate folder “kubeanchors-debian” was

created, containing the adjustments for Debian.

https://leonkrass.dev/master-thesis

 85

Appendix F: Measurement Results
The raw measurement results (log files) can be obtained from https://leonkrass.dev/master-thesis or

the attached SD card.

https://leonkrass.dev/master-thesis

 87

Zusätzliche Hilfsmittel
Neben den in der Arbeit referenzierten Hilfsmitteln, wurden OpenAI ChatGPT [134] und Microsoft

Copilot [135] ausschließlich zur Überprüfung der sprachlichen Korrektheit verwendet. Übersetzungen

einzelner Ausdrücke wurden per DeepL [136] recherchiert.

Zur Verfassung dieses Dokumentes wurde Microsoft Word [137] inkl. Features zur Prüfung der sprach-

lichen Korrektheit verwendet. Abbildungen wurden mit draw.io [138] und Diagramme mit Microsoft

Excel [71] erstellt. Zitation und Quellverzeichnis wurden mit Zotero [72] erstellt.

Im Quellcode verwendete Bibliotheken und Abhängigkeiten sind den entsprechenden Anhängen zu

entnehmen.

Eigenständigkeitserklärung
Ich versichere, die von mir vorgelegte Arbeit selbstständig verfasst zu haben. Alle Stellen, die wörtlich

oder sinngemäß aus veröffentlichten oder nicht veröffentlichten Arbeiten anderer entnommen sind,

habe ich als entnommen kenntlich gemacht. Sämtliche Quellen und Hilfsmittel, die ich für die Arbeit

benutzt habe, sind angegeben. Die Arbeit hat in gleicher oder ähnlicher Form noch keiner anderen

Prüfungsbehörde vorgelegen und ist noch nicht veröffentlicht worden. Alle zu deren Beurteilung ver-

wendeten, auch elektronischen Kopien dieser Arbeit haben genau den gleichen Inhalt wie dieses ge-

druckte Exemplar. Ich bin mir bewusst, dass eine unwahre Erklärung rechtliche Folgen haben wird.

_______________________________ _______________________________

Ort, Datum Unterschrift

Leon Krass
Stade, 07.03.2025

